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ABSTRACT

Observed spectral energy distributions (SEDs) of FU Orionis, V1057 Cygni, and

V1515 Cygni are fit by theoretical spectra, which are calculated from models consisting

of outbursting accretion disks together with flattened envelopes. Temperature in

the envelopes is determined by approximate radiative equilibrium with a central

source. The disk models are two-dimensional and include reprocessing of disk

radiation by the disk. The theoretical spectra are calculated using a radiative transfer

code and frequency-dependent opacities, at a spectral resolution of )_/AA = 14.

Excellent matches to the data are obtained for all three objects with reasonable model

parameters. Radiative transfer is also used to calculate a time series of images showing

the progress of an outburst as imaged through a B-band filter.

Subject headings: accretion disks: protostellar -- stars: pre-main-sequence -- stars:

FU Orionis -- stars: V1057 Cygni -- stars: V1515 Cygni

1. Introduction

The FU Orionis phenomenon (reviewed by Herbig 1966, 1977; Hartmann, Kenyon & Hartigan 1993)

represents a key event in the early history of a star which should provide us with important clues

on the nature of pre-main-sequence stellar evolution and the formation of planetary systems. The

three objects considered here are FU Orionis, which brightened by 6 magnitudes in 120 days in

1936-7, V1057 Cygni, which brightened by 5.5 magnitudes in 250 days in 1969, and V1515 Cygni,

which showed a much longer rise time of about 20 years, reaching a peak about 1970. At present

the three objects are respectively 1 mag, 3 mag, and 0.5 mag fainter than at maximum light. A

recent observational summary is provided by Bell et al. (1995), henceforth referred to as BLHK.
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The most likely explanation for the observed outbursts is rapid mass accretion onto the surface

of a star, triggered by a thermal instability in the inner, ionized regions of a surrounding accretion

disk (Paczynski 1976; Hartmann & Kenyon 1985; Lin & Papaloizou 1985). The principal physical

effect that induces the instability is a heating rate, say by viscous dissipation, that increases more

rapidly with temperature than does the cooling rate by radiative and convective transfer. This

situation is likely to occur in the region of partial ionization of hydrogen where the opacity is a

strongly increasing function of temperature. The details of the mechanism remain to be clarified,

since current models rely on an arbitrary viscous dissipation parameter Ca) and in some cases

an arbitrary external perturbation. Objections have been raised, on observational grounds, to

the disk model (Herbig 1989; Petrov & Herbig 1992), but by now it is clear that steady-state

disk models can explain a number of the observed features (Hartmann & Kenyon 1985; Adams,

Lada, & Shu 1987; Kenyon, Hartmann, & Hewett 1988; Kenyon & Hartmann 1989, 1991; Calvet,

Hartmann, & Kenyon 1993; Hartmann, Kenyon, & Hartigan 1993). Moreover, certain features

which are still difficult to explain with a model involving a disk with constant mass flux can be

explained by the use of more elaborate, time-dependent, vertically resolved models (Kawazoe &

Mineshige 1993; Bell & Lin 1994; BLHK).

The detailed models of BLHK, which take into account the radial and vertical structure of

the disk as a function of time through a series of outbursts, form the basis of the present paper.

The general picture is that the star-disk system is still at a sufficiently early stage of its evolution

so that matter is falling onto the outer part of the disk from the surrounding interstellar cloud

(Kenyon & Hartmann 1991) at a rate -_Iin. The results of the calculations show that as long as

_/Iin exceeds 5× 10 -7 M® yr -1 , independent of the viscosity parameter cq the thermal ionization

instability is initiated only a few stellar radii out from the star, and the disk goes into outburst.

The ionization front then propagates radially through the disk on a time scale a few times

longer than the local thermal value, reaching a maximum radius not larger than 0.25 AU (Bell &

Lin 1994). The duration of the outburst is determined by the local viscous diffusion time in the

hot, ionized region. Once this region has been sufficiently depleted by accretion onto the central

star, it cools, hydrogen recombines, and the outburst declines. The interval between outbursts is

determined by 2_Iin, which controls the rate at which mass is added to the inner disk. Once the

mass there has increased to the point where the temperature once again becomes high enough to

ionize hydrogen, the outburst cycle repeats. Spontaneous outbursts by this mechanism can explain

the light curve of V1515 Cyg, but to explain the more rapid rise times of FU Ori and V1057 Cyg

a small density perturbation in the inner disk is required to initiate the instability. This general

explanation has been used by Lin et al. (1994) to conclude that in the case of HL Tau the value of

2VIin is much larger than the accretion luminosity implied from the properties of the inner disk, so

the object could be in the quiescent stage between outbursts.

The work of BLHK emphasizes comparison of models with observed light curves. In this

paper we make further tests of the viability of the detailed two-dimensional models by comparing

them with observed spectral energy distributions and photometric properties. Previous work
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on comparison of disk models of the overall spectral energy distribution (Adams et al. 1987;

Kenyon et al. 1988; Kenyon & Hartmann 1991; BLHK) have assumed that at each radius the

theoretical disk radiates either the same spectrum as a black body at the disk surface temperature,

or as a stellar photosphere at the same effective temperature. A different approach is followed

here. Frequency-dependent radiative transfer models are obtained from the two-dimensional disk

structures (§ 2). Reprocessing of light from the hot inner disk by the cooler outer disk surface

is included. Theoretical spectra axe obtained as a function of the angle of inclination between

the rotation axis and the line of sight (§ 3) and the differences between spectra that include

reprocessing and those that don't are emphasized. The results are compared in detail (§ 4) with

observations of the spectral energy distributions of the three objects in the wavelength range

0.3-100 #m. The frequency-dependent information is then used to provide a detailed calculation

of the light distribution as a function of position and time for the model that fits the light curve

of V1515 Cyg. The implications of the results are discussed in § 5.

2. Numerical Disk models

In this section, we describe the disk models used to investigate the appearance of FU Orionis

systems. The first component, outlined in § 2.1, is a one-dimensional, radial time-dependent set

of disk evolution equations with parameters chosen in BLHK to produce an outburst with B light

curves close to those observed in one of the three program objects FU Orionis, V1515 Cygni,

and V1057 Cygni. A particular epoch of interest is then selected from the solution to the

time-dependent equations, and the model is expanded (§ 2.2) into a set of vertical structure models

at a sufficient number of radii to define T(r, z) and p(r, z), where r is the cylindrical radius and

z is height above the midplane. Reprocessing caused by the illumination of one part of the disk

surface by another is found to significantly raise surface temperatures at some radii. Our method

for calculating this reprocessing is described in § 2.3. When the disk is quiescent and its luminosity

is low, the central star may make an important contribution (§ 2.4). Finally in § 2.5, we add an

envelope to account for the observed fiat spectrum at long wavelengths. The resulting model disk,

consisting of the vertical models modified by reprocessing, plus an envelope and central star, is

shown schematically in Figure 1. From this structure, the spectra presented in § 4 are calculated

as discussed in § 3.

2.1. Time Dependent Models

The outbursting disk is evolved through time by a numerical integration of a set of equations

which represent the radial diffusion of disk material by viscosity. The equations are described in

detail by Bell & Lin (1994) and consist of mass continuity, energy balance, and the _ component

of the equation of motion (Bell & Lin, eqns 3-5). The energy equation includes viscous heating

from a Shakura & Sunyaev (1973) a viscosity, radiative losses from the surface, radial diffusion of
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Fig. 1.-- Model FU Orionis objects consist of a disk D and an envelope E. The envelope has a

thickness Az and a central hole of radius Rh. The object is viewed at an angle i from pole-on. The

central star is located at the lower left. Also shown are three example lines-of-sight along which
radiative transfer is carried out.
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radiation, and P dV work. In the region of outburst, the disk is not necessarily in vertical thermal

balance. The opacity used in this initial stage is the analytic approximation to the Rosseland

mean opacity described in the Appendix of Bell & Lin (1994). The values of a are the same as

those used by BLHK: 10 -4 throughout most of the disk where hydrogen is neutral, and 10 -a in

regions where the hydrogen is ionized.

BLHK found that the observed light curves of the three objects were fit acceptably over

a range of model parameters; these parameters include -_/in, and the size and type of density

perturbation to the inner disk. In this paper we choose their models A1, B1, and C1 from which

to calculate detailed spectral energy distributions; the models' parameters are listed in Table 1.

Outburst in the B1 disk is spontaneous, but in A1 and C1 a small perturbation is required in order

to match the rapid rise times of the FU Ori and V1057 Cyg outbursts. Such a perturbation might

be provided in a clustered star-forming environment by interactions with nearby protostars. All

three program objects lie in associations of young stars (see §3.4). Alternatively, the perturbations

might be caused by radial migration of protoplanets (Syer & Clarke 1996) or by time variation of

the effective viscosity in the outer disk. The perturbations are annuli of material added to the

radial time-dependent models during the quiescent phase between outbursts. They have inner

radii rp, masses Mp, and a fractional surface density change within the annulus of AE/_. Outer

radii are determined by Mp and AE/E.

2.2. Vertical Structure Models

In this subsection we discuss the sets of vertical structure models used to calculate spectra

and images of the disk. The models provide the detailed distributions of temperature and density

throughout the disk, T(r, z) and p(r, z). The vertical structure procedure is described in detail in

Bell & Lin (1994); the essence of the program and several modifications are described here and

in § 2.3. The basic procedure is as follows:

1. Start by calculating a set of vertical structure models, for example, for model C1 of BLHK.

Table 1: Disk outburst model parameters

Star Model Mi. Mp / A_I_] rp/

M®/yr M® r®

FU Orionis A1 3 × 10 -6 0.01 5 13

V1515 Cygni B1 1 x 10-5 0 0 --

V1057 Cygni C1 1 x 10-6 0.002 3 10

Note: Table 2 in Bell et al. 1995 (BLHK) contains two misprints, which are corrected here.
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2. Use the resulting disk surface properties, Te(r) and H(r), to calculate the flux of energy

deposited at a given point by illumination from other points of the disk.

3. Add this flux at the level where Rosseland optical depth _ = 2/3 to get a new effective

temperature at each radius.

4. Calculate a new set of vertical structure models with this new boundary condition.

In the remainder of this subsection we discuss the first of these steps. The remaining three points

are discussed in § 2.3.

The radial solution provides the disk effective surface temperature Te and degree of departure

from vertical thermal balance, at each radius. Calculation of the vertical structure model begins

near the surface of the disk. Surface pressure is chosen so as to balance the weight of the overlying

atmosphere, which is otherwise ignored. In the vertical models calculated before reprocessing,

the boundary lies at _ -- 2/3, while in the final vertical models from which spectra are computed

(§ 2.3), it lies at _ -- 0.03. Pressure and flux are next integrated towards the disk midplane. The

pressure gradient balances the exact expression for the gravitational attraction of a central point

mass - that is, finite disk thickness H ,_ r is allowed. The flux gradient includes terms due to local

energy generation by viscous dissipation, and transport by both mixing-length-theory convection

and radiative diffusion. Diffusion in the optically thin surface layer (and throughout the vertical

model) is flux limited as in Bodenheimer et al. (1990), and scattering is assumed to be negligible.

The opacity is the same approximation to the Rosseland mean as used by Bell & Lin (1994),

although the final vertical models use the more complete opacities discussed in § 2.3. Finally, the

disk height is adjusted and the integration is repeated until it yields zero flux at the midplane.

Vertical structure models are calculated at 190 values of the radius, evenly-spa£ed in log r from

r -- 3R® to r -- 158 AU. Time dependent models provide radial points out to 100R® _ 0.5 AU.

Beyond this, the disk is assumed to be transporting mass in vertical thermal balance at the rate

2t/in. Vertical models each consist of 100 points, with a grid adaptively-spaced so as to resolve

steep z gradients in temperature occurring near the surface: the gap between points is held to no

more than one twentieth of the local temperature scale height T/(OT/Oz).

2.3. Reprocessing

During outbursts, models' luminosities may exceed 100 Lo, most of which is emitted by the

portion of the disk inside 0.25 AU (the "inner disk"). Some fraction of the photons emitted by

the inner disk is intercepted by the outer disk, heating it significantly. While the inner disk has a

spectrum peaking in the visible, the outer disk is heated to temperatures such that its peak flux

is at wavelengths )_ > 2 #m. The additional flux proves useful in matching the observed fluxes at

wavelengths 2-5 #m (§ 4.1). The effect of this "reprocessing" has been studied in the limit of a

thin disk with central star by Adams & Shu (1986). In comparison, a disk whose surface is concave



up, or flared,occupiesa largersolidangleasviewedfrom the centralsource,and interceptsa
largerfractionof the photons(Kenyon& Hartmann1987;Ruden& Pollack1991).All of these
calculations,however,approximatethe centralsourceby a sphereof uniformtemperature.

Theconstructionof a pseudo-two-dimensionaldisk,describedin the previoustwo subsections,
resultsin a disk surface with several local maxima as shown in Figure 2. In calculating the

temperature distribution arising from reprocessing in this case, one must consider how the wrinkles

hide the bright inner disk from some regions of the outer disk. The details of the numerical

procedure developed to handle this problem will be discussed by Bell (1997). The calculation

assumes that the disk is solid at the _ = 2/3 surface, and radiates and absorbs like a black body.

The calculation is done for the entire disk, not accounting for the presence of an envelope. The

disk surface is divided into concentric rings by cylindrical radius w, and the rings are subdivided

by equatorial angle ¢ into surface elements. To calculate the reprocessing at a point (w0, ¢ = 0)

on the disk surface, a line of sight is drawn to each other point (w, ¢). Normals to the surface at

the two points are projected onto the line of sight between them. If the components are directed

towards one another, there is possible mutual heating. Finally, the line of sight is traced to

determine whether an intervening fold of the disk obscures the end points from one another. The

sum Fin of the fluxes arriving from all emitting points determines the reprocessing temperature

Trp at the point (w0, 0), in balance with losses by black body radiation, via

a TJp = Fin . (1)

The revised effective temperature at (w0,0) is then

To,,o,= (T: + T2p)1/4 (2)

New vertical structure models are next computed starting from the revised effective

temperatures. Since the surface layer will be important in the radiative transfer calculation, the

vertical structure calculation is now begun at an optical depth of T0 -- 0.03. The temperature

at this new starting point, To, is found from the effective temperature using the Eddington

approximation, T04 = 3 4 --_T_,tot('ro + 2/3). If the resulting To is less than the reprocessing temperature

Trp, it is set equal to Trp. This approximately represents the deposition of energy into the disk

atmosphere by reprocessing (calculated in detail by Calvet et al. 1991), which was ignored in the

calculation of lines-of-sight across the _ = 2/3 surface. Because the flux to be reprocessed enters

the disk from both above and below, the net flux through the disk surface is unchanged when

reprocessing is included and in vertical thermal balance is still equal to the flux due to viscous

energy generation. Thus the surface flux used in the calculation of the new vertical structure is

still aT4e .

The Rosseland mean opacities used in the new vertical structure models were provided

by Alexander (1995); they correspond to the frequency-dependent opacities described in § 3.1

and used in the radiative transfer calculation of § 3.2. At temperatures and densities outside

the table calculated by Alexander (1995), the Rosseland mean opacities of Pollack et al. (1985)
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(low temperatures),Alexander,Auguson,& Johnson(1989)(highertemperatures),and Cox&
Tabor (1976)(anyremainingpoints)areused.

Temperatureprofilesfor the B1 modelwith and without reprocessingareshownin Figure3.
Without reprocessing,the temperatureoutsidethe outburstregionvariesas r -3/4, as in standard

constant mass-flux accretion disk models. With reprocessing, there is a slight enhancement in

temperature in the outburst region, inside the radius where the disk reaches a local maximum in

thickness. Here, opposite sides of the disk are tilted towards one another across the central axis.

We refer to this region as the "volcano". The most important effect of reprocessing, however,

occurs at radii 0.1-10 AU, wherever the disk scale height is large enough so the surface sees over

the near rim of the volcano to the hot region within. Because the reprocessing is set by the run

of disk scale height with radius, and the scale height increases with opacity (Bell et al. 1997),

the inner edge of this reprocessing region lies near the minimum in the disk thickness, which

corresponds to the radius where the temperature is just low enough for dust grains to condense.

In the spectra calculated in § 4.1, only the inner edge of the reprocessing region plays a rSle.

The rest is hidden beneath an envelope. However, the radiative equilibrium approximation used

in the envelope (§ 2.5) yields a temperature nearly continuous with that of the disk beneath,

which was calculated by reprocessing for the disk alone. The match indicates that the disk surface

temperatures are also approximately correct for the case where the disk is covered by the envelope.

Because the envelope is optically thick, the surface temperature of the disk beneath the envelope

plays no part in determining the SED.

Over the range of radii where reprocessing is important, the disk's temperature profile is

flattened almost to T ,._ r -1/2. As one moves from the inner edge of this range to the outer, the

disk height increases faster than the radius, the surface turns concave away from the midplane or

"flared", and an increasing fraction of the inside of the volcano is visible from the disk surface.

Beyond r _ 10 AU, reprocessing is insignificant because the disk surface is concave towards the

midplane and the bright inner disk is hidden from view. This change in curvature is due mostly

to the opacity law E(T) (Bell et al. 1997). Below the water ice condensation temperature of 125 K

to which the disk material falls near 10 AU, _ is proportional to T 2, while in warmer material the

opacity varies more slowly with temperature.

The main change in the disk's vertical structure due to inclusion of reprocessing, apart from

the rise in surface temperature, is an increase in the thickness of the surface layer. The increase

is greatest at radii between 4 and 8 AU, where reprocessing thickens the disk by 10%. At the

midplane, temperature and density nowhere change more than 1.6%. For this reason, the extra

energy input from reprocessing is not expected to significantly change the time evolution of the

radial disk model. The calculation of reprocessing and resulting new vertical structure models

can in principle be iterated until the disk thickness and effective temperatures both converge.

However, we limit our procedure to one pass because experimentation has shown that the bulk

of the effect is achieved after a single application. As discussed above, the inner 0.1 AU, where

almost all of Fin originates, is altered only slightly by the reprocessing calculation.
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Fig. 2.-- Shapes of the T = 0.03 surfaces of the inner, outbursting parts of the three disk models,

showing the hot "volcanos" surrounding the central star (black dot). Scales on the horizontal and

vertical axes are the same, so the disks are shown in their true proportions and the extent of

reprocessing can be gauged.
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Fig. 3.-- Disk temperature at the T = 0.03 surface versus radius in the B1 model, with reprocessing

(solid line) and without (dots). Also shown is the temperature at the base of the envelope for each

radius (dashes).



- 10-

2.4. Central Star

Since the innermost radius r included in the disk models is 3R®, we must choose temperature

and density distributions for r < 3R®. If the central star is a T Tauri star of Solar mass and

luminosity, its surface temperature and radius are between 3 000 and 4000 K and about 3R®,

respectively, implying that during outburst, the star's own luminosity is negligible compared with

that of the inner disk. However, the structure of the region where tile disk meets the star is

not known. Does the disk engulf the star with hotter material in outburst, as suggested by the

two-dimensional radiation hydrodynamic calculations of Kley & Lin (1996)? The disk model does

not account accurately for the interface between disk and star. It assumes Keplerian rotation even

at r = 3Ro, whereas at this radius the radial pressure gradient is large, suggesting some departure

from Keplerian rotation. At r = 3R®, the model disks' half-thicknesses are about 1Ro.

As a test of the importance of the innermost 3R® to the integrated spectrum during outburst,

two spectra were calculated as described in § 3.2. For the first, the central 3R® was occupied

by a sphere of uniform surface temperature 3 400 K. For the second, the vertical structure of the

disk model at 3R G was copied to smaller radii. The models' effective temperatures at 3R o are

5 6 000 K, while their midplane temperatures are 1.0-1.2 x 105 K. The resulting spectra differ by

at most 0.016 decade in flux over the entire wavelength range. In the remainder of this paper, the

center of the disk is occupied by a star of temperature 3 400 K and radius 3R®.

2.5. Envelope

FU Orionis stars show flux excesses at infra-red wavelengths _ _ 10 #m when compared both

with normal giant stars and with equilibrium dusty disks. In V1057 Cygni, the excess diminished

after outburst in step with flux at B-band, suggesting the 10 pm flux may be due to absorption

and re-emission of radiation from near the central object by material out of the plane of the disk,

such as a circumstellar envelope (Kenyon & Hartmann 1991). As we have seen in § 2.3, the excess

cannot be fully explained by disk reprocessing, because reprocessing does not heat the disk surface

outside about 10 AU radius. For a viewer on the surface outside this radius, the outburst region

is hidden by the curve of the disk.

Our simplified model of the envelope is a layer of uniform thickness, touching the top of the

disk, and with a central hole exposing the inner disk (Figure 1). This structure for the envelope is

suggested by the results of two-dimensional collapse calculations, in which the density structure of

matter infalling onto a disk is closer to plane-parallel than to spherical geometry, and most of the

optical thickness is just above the surface of the disk (Yorke, Bodenheimer, & Laughlin 1993). Our

envelope is made from material with the same opacity function as that in the disk (§ 3.1). The

temperature Td in the envelope a distance d from the center of the system is calculated assuming

the envelope dust is in approximate radiative equilibrium with the object's hot inner region. That

is, the rate of energy loss by radiation is balanced by the rate at which radiation from the hot
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region falls on the dust:

41raT4 Lit
= _--_, (3)

where Lit is the "illumination luminosity", the portion of the luminosity of the outbursting part

of the disk which is intercepted by the envelope. This temperature distribution is correct for an

optically thin medium. For an optically thick medium, equation (3) is also approximately correct.

This is indicated by the radiative transfer calculations of Hartmann, Kenyon & Calvet (1993)

for spherical optically thick envelopes around Herbig Ae/Be stars, and of Kenyon, Calvet &

Hartmann (1993) for spherically symmetric protostellar envelopes in which density is proportional

to d -3/2. The variations of temperature with distance resulting from these calculations range from

T ,,- d -°75 to T ,-_ d -°'4. In non-spherically-symmetric models Yorke et al. (1993) find T _ d -1/2

also, in both optically thick and optically thin regions. For a thin disk, T ,,, d -1/2 reduces to

T --_ r -1/2, which yields a flat AF_ spectrum (Adams, Lada & Shu 1988) as observed in FU Orionis

objects at A _ 5 #m.

The parameters which fix the geometry of the envelope are its thickness Az parallel to the

disk axis, the radius of the central hole Rh, and the extinction A ENV through the thickness. At

the inner edge of the envelope, Az is larger than the disk thickness. Density in the envelope is

chosen so as to yield the specified extinction at temperatures between 125 K and 800 K. Opacities

in this temperature regime are described in § 3.1. The thickness of the disk beneath the envelope

is determined including reprocessing, but because the disk thickness is changed at most 10% by

reprocessing, the effect on the spectrum is negligible.

When the optical depth through the envelope is less than unity, the spectrum of the envelope

appears as emission or absorption lines superposed on the spectrum of the disk. These lines,

due to water ice and silicates, appear at wavelengths 3-30 #m. Such lines do not appear in

spectra of FU Orionis and V1057 Cygni (Cohen 1980) (except during dimming events such as

that experienced by V1057 Cygni in 1995 - Wooden et al. 1995; Wooden 1996). The lines are

absent from the models' spectra provided that at each radius the envelope has an optical depth

greater than unity at wavelengths where it and the disk beneath it contribute significantly to the

integrated SED. When this condition holds, the spectrum is also insensitive to both the density in

the envelope and its variation with radius. The condition is satisfied when the extinction through

the envelope is uniformly above AEvNv = 100 magnitudes. It is satisfied almost everywhere when

density varies as the inverse square root of the disk radius, with A ENV = 100 magnitudes at disk

radius r = 1 AU. Such a density distribution is obtained when a spherical p ,,_ d -3/2 distribution

is flattened vertically into a disk. The region where the condition is not satisfied in this case is

outside 25 AU, where the envelope is now optically thin at wavelengths Z 30/_m. Compared with

the case where the condition is satisfied throughout the envelope, this results in a spectrum which

falls off more rapidly as A increases past 30 #m. Throughout the remainder of this paper, density

in the envelope is held uniform and equal to the value which results in A ENv = 100 magnitudes.

Resulting densities lie between 10-14 and 10 -12 gcm -3, for the parameters listed in Table 3.

Corresponding mass infall rates can be estimated using the results of the calculations of Yorke et
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al. (1993). Typical velocities perpendicular to the disk surface for the infalling material in their

simulations axe about 3 km s -1. When the infalling material has a density of 10 -14 g cm -3 over

the inner 25 AU of the disk, this yields a mass infall rate of 10-SM® yr -1, similar to the rates

used in the time-dependent disk models (Table 1).

If the model FU Orionis objects were fully self-consistent, the envelope temperature as set

by Lit would be continuous with the temperature of the disk hidden beneath it. However, as

Figure 3 indicates, while the temperature calculated from reprocessing agrees quite well with the

dust equilibrium temperature assigned at the same radius throughout most of the disk, there is

significant departure outside r = 10 AU, where the curve of the disk hides the hot inner regions

from points on the disk surface. Here we maintain illumination of the envelope since the radiation

transfer calculations of Yorke et al. (1993) indicate that in the infalling material T ,_ r -1/2,

independent of the optical depth along the line of sight to the central source.

3. Calculation of emergent radiation"

3.1. Wavelength-dependent opacities

New opacities for use in the radiative transfer calculation were obtained from Alexander (1995),

calculated as described in Alexander & Ferguson (1994) for the $92 composition (Seaton et al. 1994)

with X -- 0.70 and Z = 0.02. All known sources of opacity which are significant at temperatures

between about 700 K and 12 500 K axe included. Alexander convolved monochromatic opacities

with a Gaussian filter of half-width equal to 2% of the inverse wavelength, because of the very

broad range of wavelengths to be covered. The result is a table of opacities _ (R, T) averaged

around 100 wavelengths A. R is equal to p/(T/lO 6 K) 3. The 100 wavelengths are evenly spaced in

log/k from 100 nm to 100 #m. Spectral resolution is thus A/AA = 14, sufficient to reveal individual

strong lines. For example, Ha at wavelength 656 nm is represented by one opacity value on the

line, and adjacent continuum values. The table has entries every 0.5 decade in R and every

0.2 decade in T, except for temperatures from 800 K to 3300 K, which bracket rapid changes in

opacity due to dust evaporation and ionization. Here there are entries every 0.1 decade in T. A

few points required for the radiative transfer calculations fall outside the available R and T. In

these cases, we use a_ at the same T and the nearest available R.

Below 700 K, there is only sparse data available on the optical properties of the materials

which condense as dust grains, and the opacities are less reliable. In the absence of better

frequency-dependent low-temperature opacities, Alexander's 800 K opacities are used in the

present calculation down to a temperature of 125 K. These opacities include grains made of

silicates, iron, amorphous carbon, and silicon carbide. Graphite is not included in the Alexander

opacities, presumably because its importance in protostellar environments is controversial (Pollack

et al. 1994). Yorke (1979) also provides opacities in this temperature range, but for silicate grains

only. Neither Yorke's data, nor the extrapolated Alexander data has temperature or density
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dependence.The Yorkevaluesareslightly lowerthan the total opacitiesof Alexanderat most
wavelengths.For temperaturesof 125K andbelow,watericebecomesan important sourceof
opacity.Weusethesumof Yorke's(1979)opacitiesdueto watericeandsilicates.

3.2. Spectra

Radiation emerging from a distribution of density p(r, z) and temperature T(r, z) is calculated

by integration of the equation of radiation transfer (Mihalas 1978)

dI______= I_ - S_ (4)
d_-_

along a set of lines of sight through the distribution. The numerical procedure is a modification of

that described by Yorke (1986). The source function used is a black body, S_ = B_(T). The optical

depth T_ is defined by d-r_ = a_pdx, with wavelength-dependent opacity g_(p,T). Equation 4 is

solved separately at each wavelength. Wavelengths used are those for which opacities are provided

(§ 3.1). For a given line of sight, optical depth _:_ -- 10 is located by integrating from the observer

into the medium. The outward integration, which determines the emergent specific intensity,

then begins at this point. The specific intensity I_ is set equal to the black-body intensity B_

corresponding to the local temperature, and equation 4 is integrated back towards the observer.

At each integration step, the step length Ax is chosen so that its optical depth AT_ = _ pAx

is at most 0.1, and also so that it is shorter than one third of the local spatial resolution of the

outburst model. If this step would leave or enter the material making up the disk or envelope,

the step length is shortened so as to end the step within 10 -5 R® of the boundary. This ensures

physically thin layers have the correct optical depth, and abrupt opacity and temperature changes

near boundaries are well-represented in the integration. As needed for finding the source function

and opacity along the line of sight, density and temperature are linearly interpolated on the

non-rectangular grid made by the series of vertical models. Opacity at each wavelength is found

by interpolating in log space on the grid of densities and temperatures described in § 3.1.

The integrated spectrum of the model is calculated by summing emergent spectra over

regular square grids of lines-of-sight. Because temperature variation in the disk occurs over small

spatial scales near the star, and larger scales further away, a nested, concentric set of line-of-sight

grids is used. The innermost grid is 0.2 AU across, and successive grids are five times wider.

The outermost extends to 125 AU radius. When viewed from directly over the pole, the disk

is circularly symmetric, and the grids are one-dimensional, each with 51 lines-of-sight along the

radius. For inclination angles 0 < i < 90 °, the view of the disk is symmetric only about the plane

containing the polar axis and the line-of-sight. In this case, each grid is two-dimensional, and

consists of 51 lines-of-sight along the radius perpendicular to the symmetry axis and 101 along

the diameter parallel to the symmetry axis. The resolution on the innermost grid is 0.004 AU, or

0.85R@. With the disk models described here, increasing the resolution beyond this level produces

negligible change in the total spectrum.
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The apparentmagnitudeof the modelin the B spectral band is calculated by integrating

in wavelength the product of the spectrum F_ and a filter transmission curve, and applying

the calibration between integrated flux and magnitude of Colina & Bohlin (1994). The filter

transmission curve used is that tabulated by Johnson (1965).

3.3. Images

The same radiative transfer calculation which yields the integrated spectrum of the object

also yields a spatially-resolved image. Solution of the radiative transfer equation along a line of

sight yields the spectrum of radiation emerging from the disk at one point. A flux is found by

integrating in wavelength the product of this spectrum with a filter transmission curve. Fluxes

from all the lines of sight are assembled on a grid, making an image of the object.

3.4. Distances and Extinctions

To match the absolute level of a physical model against that of an observed spectral energy

distribution, we need the distance to the object and the amount of obscuring material along our

line of sight. Measurements of these quantities for the three objects are collected in Table 2.

The estimate of the distance to FU Orionis is taken from Murdin & Penston (1977), that of

the distance to V1057 Cygni from Straizys et al. (1989). The distance to V1515 Cygni was

estimated by Racine (1968). Extinctions to the three objects were assembled by BLHK. In adding

extinction to the calculated spectra, we scale the wavelength dependence of interstellar absorption

(Mathis 1990) so as to obtain the desired extinction at 0.55 #m, the central wavelength of the

V band.

Also in Table 2 are the luminosities of the objects and the corresponding models. The

quantities listed are apparent B magnitude; de-reddened B-band luminosity; and de-reddened

total luminosity, integrated from 0.380 #m to 100 pm. B-band luminosities were calculated from

the apparent magnitudes assuming Rv = Av/E(B - V) = 3.1. Total luminosities were calculated

by integrating the spectral energy distributions of Kenyon & Hartmann (1991), assuming for

Table 2: Distances, Extinctions, and Current-Epoch Luminosities of FU Orionis Objects

Star Distance Av B Mag LB/LB,® Ltot/Lo

pc mag Data Model Data Model Data Model

FU Orionis 400 ± 60 2.0 10.6 10.64 160 160 250 260

V1057 Cygni 550 + 100 3.1 13.4 13.79 90 50 250 200

V1515 Cygni 1000 + 200 2.8 13.7 13.59 160 170 230 290
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V1515 Cygni a falloff at long wavelength with the same shape as that of V1057 Cygni. The models'

B-band and total luminosities were calculated using the methods of § 3.2 and the parameters

of Table 3. The discrepancy between the luminosities of the C1 model and V1057 Cygni was

resolved by placing the C1 model at 500 pc rather than at 550 pc (see § 4.1). This lies within the

uncertainty in the distance measurement. The apparent B magnitude of V1515 Cygni was found

by extrapolating the light curve through a dimming which began in 1980 (Kenyon et al. 1991).

The B-band luminosity calculated for V1515 Cygni from the magnitude is thus not directly

comparable with the total luminosity, which is calculated from a SED which includes the effects

of the dimming.

4. Results

4.1. Spectral Fits

Figure 4 shows our best matches to recent observed spectral energy distributions of the three

stars. These are the data collated by Kenyon & Hartmann (1991), but without de-reddening.

SED points are placed at the nominal wavelengths of the photometric bands, which in most cases

are effective wavelengths for equal input energy at all wavelengths. Filter transmission curves are

taken from Johnson (1965) for bands UBVRI and N; from Bessell & Brett (1988) for JHKLM;

and from references under Kenyon & Hartmann (1991) for other bands. The models' parameters

are given in Table 3.

Figure 4 also shows that the B1 model spectrum coincides with the V1515 Cygni data at

B-band, and is an excellent fit at other wavelengths, if it is reddened by Av = 3.2 mag instead

of the nominal Av -- 2.8 mag. Some of the V1515 Cygni data were obtained while that object

had not fully recovered from a dimming it experienced beginning in 1980. The dimming, which is

thought to be a dust condensation event, was accompanied by an increase in the object's reddening

(Kenyon et al. 1991).

The data in Figure 4 include measurements obtained over about ten years, so a little caution

is needed in matching them with models of any particular epoch. For example, points at 12, 25,

60, and 100 #m were obtained with the Infra-Red Astronomy Satellite (IRAS) in 1983-84, while

near-infrared data were obtained by Kenyon & Hartmann in 1989-90. The spectra are calculated

from models at epoch 1993.

4.2. Comparison with Other Spectral Fits

In this subsection we compare the fits generated in § 4.1 with those obtained in previous

attempts to model the spectral energy distributions of FU Orionis stars using accretion disks.
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The modelsof Adamset al. (1987) are constant mass-flux accretion disks, with excess IR

emission arising in dusty shells, remnant wedges of the objects' spherically-symmetric parent

molecular cloud cores lying > 1 - 10 AU from the central object. A spectrum, calculated assuming

blackbody emission from the disk and envelope and grain opacities in the envelope, matches the

spectrum of FU Orionis adequately at visible wavelengths, but rises from 10 to 30 #m, in conflict

with the data presented in Kenyon & Hartmann (1991) and plotted in Figure 4.

The models of Kenyon, Hartmann _z Hewett (1988) are also constant mass-flux accretion

disks, but without a source of excess IR emission. Spectra are calculated by assigning each disk

annulus the fluxes of a supergiant star of the same effective temperature, and summing over the

disk. Annuli with temperatures below 3 500 K are assigned blackbody spectra. The resulting fits

to FU Orionis and V1057 Cygni are adequate at wavelengths of 0.35-1 #m, but too bright by

almost a magnitude at 2/zm, and too faint by over a magnitude at 20 #m.

In the flared-disk models of Kenyon & Hartmann (1991), a constant mass-flux disk reprocesses

light from a central star. The surface of the disk is bent into a shape H ... r 9/s, where H is the

disk thickness and r is the cylindrical radius. This makes reprocessing more effective than in a

flatter, standard constant mass-flux disk. Spectra are calculated as in Kenyon et al. (1988). The

fluxes at 3-30 #m are higher than those from non-reprocessing disks, but in the wavelength region

longward of 5 #m, which we match using a transition from disk to envelope, the best-fit flared-disk

models of FU Orionis and V1057 Cygni are too bright at short wavelengths and too faint at

long wavelengths. Kenyon & Hartmann (1991) also present spectra calculated from models of

V1057 Cygni which include a spherically-symmetric dusty envelope and a steady accretion disk.

The radial optical depth of the model envelopes at wavelengths 5-50 #m is close to unity. The

spectra match the observations well, except that they show broad features at 3-30 pm which do

not appear in higher-resolution observations of FU Orionis and V1057 Cygni (see § 2.5).

The SED fits in Figure 4 are more detailed in several ways than the three others just discussed.

They are calculated from outbursting disk models in which the mass flux varies with radius; the

models include reprocessing of disk emission by other parts of the disk; and the shape of the

disk surface is consistent with the underlying accretion model. An envelope is included, based

on results of hydrodynamic collapse simulations; and the SEDs are calculated from the models

by radiative transfer with fairly complete frequency-dependent opacities. The more detailed

Table 3: Parameters used in calculating the simulated spectra shown in Figure 4.

Star Model Distance/pc i Li_/Lo Rh/AU Az/AU

FU Orionis A1 400 30 ° 11 0.8 0.8

V1057 Cygni C1 500 0 ° 30 0.1 0.1

V1515 Cygni B1 1000 0 ° 33 0.2 0.4
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Fig. 4.-- Fits (solid lines) to current-epoch un-dereddened observed fluxes from Kenyon &

Hartmann (1991) (points), for the three objects. Vertical error bars on the data points show

the quoted uncertainties in fluxes. Horizontal error bars extend to the wavelengths where filter

transmission drops to 50% of its peak value. Where the wavelength range is short or the flux error

is small, error bars lie inside the points. Interstellar reddening is included in the model spectra.

The B1 model spectrum is also reddened an additional 0.4 mag (dotted line), as a possible way to

allow for V1515 Cygni's sudden 1980 dimming. Parameters of the models are listed in Table 3.



- 18-

calculationproducesSEDswhichmatchthe observations closely, especially at wavelengths from

5 to 100 pm where the spectrum is determined largely by the envelope. The difference between

observed and model fluxes is no more than about 0.25 mag at most wavelengths, with a few points

off by up to 0.75 mag.

4.3. Parameter sensitivity

In the spectral fits of Figure 4, two sets of parameters vary the shape of the spectrum in two

different wavelength regions. At visible and near-IR wavelengths, the flux is determined by the

distribution of hot material, which is found only in the outbursting inner disk. At wavelengths

longer than about 5 /_m, the luminosity is dominated by large surface areas instead of high

temperatures, and the flux is set by the envelope. At intermediate wavelengths, inner disk,

reprocessing by the outer disk, and envelope can all be important, depending on the parameters.

As discussed below, the parameter set needed to fit a spectrum is not necessarily unique.

The parameters which affect the disk portion of the spectral energy distribution are the

viewing angle, i; whether reprocessing is included; the time-averaged mass flux h_/and mass of

the central star, M., to both of which the disk luminosity is proportional; and the interstellar

extinction, Av. Parameters which influence the envelope part of the SED are the luminosity Lil

of the outbursting disk as seen from the envelope; the envelope extinction AEvlvV, thickness Az,

and central hole radius Rh; and the viewing angle i. Several of these parameters are restricted

by data, while others are unimportant to the spectra. Among the disk spectrum parameters,

M. was set in the BLHK models to 1M® for all three objects. This is based on a pre-outburst

spectrum of V1057 Cygni indicating it was a T Tauri star and hence roughly of Solar mass, and

space density arguments which suggest FU Orionis objects cannot be precursors of high-mass stars

(Herbig 1977). The mass fluxes were chosen by BLHK so the light curves of the model disks would

match the observed time variation of B-band light (Table 1). Interstellar extinction is not treated

as a parameter; we use the values discussed in § 3.4. The angle at which we view V1057 Cygni is

restricted by rotational line broadening measurements to i < 30 ° if the central mass is close to

1M®, while the inclination of FU Orionis must be 25 ° < i < 70 ° (Kenyon et al. 1988). We choose

to view the models pole-on (i = 0°), except for FU Orionis, for which we assume an inclination

of 30 ° .

Among the envelope spectrum parameters, the extinction A ENV is set to 100 magnitudes to

ensure the envelope is optically thick at all wavelengths. Since the envelope has a temperature

different from that of the underlying disk, an optically thin envelope would yield strong emission

or absorption lines due to water ice and silicates at wavelengths 3-30 #m. These are not observed

in FU Orionis nor in V1057 Cygni (Cohen 1980; Wooden 1996). Kenyon & Hartmann (1991)

used an envelope extinction of 50 magnitudes. However, the inner parts of our envelope are

too hot for ice grains to exist, and consequently have reduced opacity. For an envelope with

A ENv = 50 mag, where ice is solid the optical thickness is high, but wherever ice has sublimated
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Fig. 5.-- Sensitivity of the spectrum of the B1 model to three disk parameters (left) and three

envelope parameters (right). The model is viewed (a) 0, 20, 40, and 60 ° from pole-on (top to

bottom); (b) with (upper) and without (lower) disk reprocessing (the envelope has been removed);

(c) with disk luminosity scaled up (top) and down (bottom) by factors of two; (d) with luminosity

Lit illuminating the envelope scaled by factors of 3 (top) and 1/3 (bottom) from its best-fit value;

(e) with the radius of the hole in the envelope varied likewise (a larger hole leads to a higher flux

at 3 #m); (f) with the thickness of the envelope varied likewise (a thicker envelope leads to a lower

flux at 3 #m). See § 4.3.
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the optical thicknessis lessthan unity at wavelengths,k > 4 #m. Increasing A ENV beyond our

chosen value of 100 mag has little effect on the spectra. Another envelope spectrum parameter,

the luminosity Lit illuminating the envelope, is expected to be less than the total luminosity of the

outburst region in the disk. Collapse calculations suggest that reasonable values for the envelope

thickness Az may lie in the range 0.1 - 10 AU (Yorke et al. 1993). The hole radius Rh must be at

least 5R@ if the hole is to expose the peak surface temperature in the outbursting disk, and must

be 40R® _ 0.2 AU if the entire outbursting region is to be visible.

Variation of the models' spectra over the remaining parameter space is illustrated in Figure 5,

which sets out spectra calculated for the B1 model

(a) at viewing angles i = 0, 20, 40, and 60°: Increasing the viewing angle reduces the

projected area of the disk, hence decreases the flux at all wavelengths. Beyond a critical

angle, the inner edge of the envelope hides the central outbursting region, and the flux at

visible wavelengths plummets.

(b) with and without reprocessing: The envelope is removed so the spectra reflect disk

temperatures only. Reprocessing yields a spectrum which is almost flat at wavelengths

of 3-10 #m, whereas a standard constant mass-flux accretion disk with T _., r -3/4 has a

long-wavelength spectrum AF;_ ,,_ /k-4/3.

(c) with values of MM, equal to one half, once, and twice the standard value:

The integrated disk luminosity is proportional to /Y/M,. To scale luminosity L, we scale

temperatures throughout the disk as LU4 (Lin & Papaloizou 1985). Note that this scaling

does not accurately represent changes in spectral lines. Since the envelope illuminating

luminosity Lit is not adjusted, the spectrum is unaffected at wavelengths longer than a

few #m.

(d) with standard, one third, and triple luminosities illuminating the envelope: The

level of the flat spectrum is determined by the luminosity illuminating the envelope. A high

Lit means a high starting temperature in the envelope's T ,._ r -1/2, and so a high flux at

given wavelength.

(e) with holes in the envelope of the standard radius, one third, and three times

standard: Increasing the radius of the hole exposes more of the disk material heated by

reprocessing to temperatures of 1000-1500 K. Since the envelope at the same radius is cooler,

exposing more of the disk raises the flux at 2 3 #m.

(f) with envelopes of standard, one third, and triple thicknesses Az: Increasing

the thickness of the envelope places the envelope's upper, visible surface further from the

illuminating source. This reduces the flux from the envelope at wavelength 5 #m, and total

flux at this wavelength falls to near that of the disk alone. In addition, unit optical depth in

the thicker envelope spans a larger range of temperatures, resulting in stronger absorption

lines which are not observed in these objects.
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The mappingbetweenmodelsand spectrais not one-to-one.Thereexist combinationsof the
parametersfor whichthe calculatedspectraare almostidentical. For example,changingthe
distancefrom whichweview the modelmultipliesthe spectrumby a factor independentof
wavelength,shiftingit verticallyonour logarithmicplots. This is almostthe sameasthe effectof
changingthe anglefromwhichweviewthe model,providedthe viewingangleis not solargethat
the hot centralregionof the disk is obscured.Changingthe massinflowrate/V/, or equivalently
the massof the centralstar, M,, scales the luminosity of the disk and so likewise shifts the

continuous spectrum vertically. However, reasonable ranges in any of these parameters require

only small changes in the accretion disk models. As the C1 model set up by BLHK is slightly less

luminous than V1057 Cygni, we choose to place the model slightly closer than the star (§ 4.1).

We could instead have increased its luminosity using the M, it_/ scaling described above under

item (c). Since scaling luminosity scales the peak surface temperature of the disk, it moves the

peak wavelength of the un-reddened spectrum. However, once several magnitudes of interstellar

reddening are applied, the peak in the ),F_ plot always lies near the H-band, effective wavelength

1.63 #m, as fixed by the reddening curve.

The effects on the spectrum of the envelope hole radius Rh and thickness Az are similar and

small, and they occur in overlapping wavelength ranges. The hole radius would have almost no

effect on the spectrum if our model envelope were fully consistent with the reprocessing applied

to the model disk (§ 2.3), in which case the disk temperature and envelope temperature would be

nearly continuous. Thus the precise assumed geometrical structure of the envelope is not critical.

For good fits to the observed spectra, the important requirements on the envelope are (1) AEvgy

must be large, and (2) the temperature distribution must be r -1/2, as in equation (1).

The luminosity illuminating the envelope, Lit, is not degenerate with other parameters;

the observed SEDs thus constrain the value of Liz for each object. The best-fit values listed

in Table 3 are much less than the objects' total luminosities in Table 2. This occurs because

equation (3) assumes isotropic radiation from the central region, whereas in fact the bulk of the

total luminosity is emitted from deep inside the volcano, towards the pole, and plays no part in

heating the envelope. Compared with the region inside the volcano, the portion of the inner disk

which provides the chief illumination for the envelope has about twice the surface area and half

the surface temperature (figures 2 and 3). Application of the Stefan-Boltzmann law thus suggests

the envelope will be illuminated by a luminosity around one eighth that of the total for the object.

According to Table 2 and Table 3, the envelope intercepts between one sixth and one twenty-fifth

of the total energy emitted by the object.

More evidence that the disk models are compatible with the required Lib comes from close

inspection of the disk surface shapes in Figure 2. The ratio of Lib (Table 3) to the total B-band

luminosity of the object (which arises almost entirely in the outbursting region; Table 2) is highest

for V1057 Cygni. The corresponding model, C1, has the smallest rim to its volcano, exposing hot

material to the largest range of radii in the outer disk. The next-highest Li_/LB is exhibited by

V1515 Cygni (B1). Compared with FU Orionis (A1), its rim is smaller, its outer disk surface lies
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higher,and its peaksurfacetemperatureoccurshigherabovethe midplane.The threemodels'
ranking in opennessof their centralvolcanosis the sameasthe rankingof the objectsin the
relativeluminositiesLil/LB needed to explain the observed envelope spectra.

The models were truncated at a radius of 125 AU because the observed fluxes decrease with

wavelength at )_ _ 50 #m, corresponding to an envelope temperature of about 60 K. The disk

surface temperature at the same radius is 10 K (Figure 3), comparable to that expected in the

surrounding molecular cloud. The accretion disk model then breaks down because viscous heating

is no longer the main energy input. Furthermore, radiative collapse calculations by Yorke et

al. (1995) suggest that the disk plus envelope becomes optically thin near this radius. Thus the

spectra would fall off beyond this wavelength even if the models were not truncated.

4.4. Simulated B-band images

Figure 6 shows the appearance of the inner 0.3 AU of the disk in the B1 model. This is

the model whose spectrum and light curve match that of V1515 Cygni, but here its envelope is

removed and it is viewed 30 ° from pole-on, through a B-band filter. Lighter areas of the images

are brighter; the density of grey scales with the logarithm of the flux. The series of images is

calculated from a series of B1 models spaced every 25 years through an outburst cycle. The series

covers quiescence while material accumulates and slowly migrates in through the inner disk (1243,

1543, 1943), through onset, when the temperature at the inner edge of the disk rises high enough

for hydrogen to be ionized, through the outward propagation of the ionization front (1968, 1993,

2093), and as the outburst declines (2168) and a new cycle begins (2193). Note the bright inner

slope of the volcano, an asymmetric white crescent at the centers of the 1968, 1993, and 2093

images. Also, note the increased reprocessing in the outer disk during outburst. Reprocessing

of illumination from a central star has been added to the disk models when they are quiescent.

In outburst, the disk dominates total light. In quiescence, the disk is fainter than the star. The

radius of the assumed star is 3R®, and its temperature is 3400 K. The images were computed as

described in § 3.3. Though spatial scales this small in protosteUar accretion disks are unlikely to

be directly imaged in the near future, occultation measurements have already been used to resolve

spatial scales of about 1 AU in the disk around T Tauri (Simon et al. 1996).

5. Discussion and Conclusions

In this paper, we have calculated SEDs from the outbursting accretion disk models of BLHK,

using frequency-dependent radiative transfer and including disk-disk reprocessing. Previous

workers have calculated SEDs for constant mass-flux disks by summing blackbody emission or

stellar spectra over a _ = 2/3 surface. Our spectra also provide a good match for the observed

SEDs of FU Orionis, V1057 Cygni, and V1515 Cygni. In our model, the flux at wavelengths
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A.D. 1243 A.D. 1543 A.D. 1943 A.D. 1968

A.D. 1993 A.D. 2093 A.D. 2168 A.D. 2193

Fig. 6.-- Time series showing the progress of an outburst cycle in the model V1515 Cygni (B1)

disk, as seen through a B-band filter. All frames cover 0.3 AU in radius, and share one flux scale

which spans 18 decades. The brightest regions represent a B-band flux through the disk surface

of 1 × 1011 erg cm -2 s -1. The disk is tipped away from the viewer by 30 ° from pole-on. The B1

model SED shown in Figure 4 was calculated using the 1993 disk model in the fifth frame. A full

outburst cycle in this model lasts 1150 years.
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0.35-2 #m is provided by the disk inside 0.25 AU. Flux at 2-5 #m is provided partly by the disk

inside 0.25 AU, partly by reprocessing in the outer disk of luminosity from the inner disk, and

partly by a flattened envelope in approximate radiative equilibrium with a central luminosity Lit.

Flux at 5-100 #m is provided by the envelope.

Our model FU Orionis objects have some remaining weaknesses. Since the luminosities

needed to match the envelope spectra differ somewhat from those available in the models for

reprocessing by the envelope, it is likely the shape of the volcano is not accurately rendered by

the disk models (§§ 2.3, 2.4). However, among the three objects, a higher required envelope

illumination luminosity does correspond to a more open model volcano (§ 4.3). Another hint of

mild inaccuracies in the disk models comes from Figure 4, where both A1 and B1 show excesses

at 0.55 #m over the corresponding measured fluxes. While the B1 excess may be due to the 1980

dimming event in V1515 Cygni (§ 4.1), both excesses might also be removed if the steep shapes of

the volcanos shown in Figure 2 were relaxed, reducing the small degree of reprocessing between

the volcanos' opposite walls. Whether this relaxation is realistic could be demonstrated using

two-dimensional hydrodynamic simulations of the outburst region, allowing radial derivatives of

the physical quantities to act on the structure. The volcanos would be flatter also if the viscosity

parameter a in the outburst region were larger than the value of 10-3 used in the BLHK models.

The disk models further omit the back reaction of self-illumination on the propagation of the

outburst, which is expected to be a second-order effect. Again in Figure 4, the spectrum of the C1

model is about 0.1 decade too faint at 3/_m, and 0.1 decade too bright at 5 #m. If the model

were more luminous or its volcano were more open, so that reprocessing were stronger, this mis-fit

might be corrected by increasing the radius of the hole in the envelope.

The model envelope is another area where further work is needed. Our model is an

over-simplification chosen for the small number of parameters it introduces. Model envelopes

could be generated using a two-dimensional radiation hydrodynamic collapse calculation, but the

exploration of parameter space needed to find envelopes appropriate for the spectra would make

this a large undertaking. However, reconciliation of the illumination luminosities with the central

luminosities of the objects does require more realistic vertical density gradients in the envelope,

such as would be obtained from collapse calculations.

The disk models assume a constant, low viscosity parameter a = 10-a outside the outburst

region. As discussed by BLHK, this small viscosity results in a disk which is self-gravitating for

the given input mass fluxes at radii beyond about 1 AU, yet we extend the disks to radii of 100 AU

and more. This clear inconsistency is perhaps justified because outside a radius Rh (0.8 AU in

the largest case, the A1 model), the disk is invisible, hidden beneath the envelope. The thickness

of the outer disk does affect the spectrum via the envelope temperature, which is a function of

distance from the central object (equation 3). But this distance is only a weak function of the disk

thickness, so any effect on the spectrum is small. The other requirement on the outer disk by the

outburst model is that the outer disk supply mass at a near-constant rate; the mechanism of mass

transport there might for example be gravitational instability, rather than that in the standard
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Shakura& Sunyaev(1973)accretiondiskpicture.

Although the processwhichtriggersthe rapid rise-timeoutburstsof FU Orionisand
V1057Cygni is still not understood,work in this paper lendssolid additionalsupportto the
hypothesisthat a thermalaccretioneventin a protostellardisk is responsiblefor the outburst.
Thespectralfitting alsoshowsthat anoptically thick dustyenvelopeis an important component
of the system,requiredto fit the 5-100#m region.The presenceof the envelopeunderscoresthe
relativeyouthof theseobjects.Thecalculationsdemonstratethat reprocessingof disklight by the
disk itselfcanproducea surfacetemperaturedistributionT ,,_ r -1/2, which would result in a fiat

spectrum in the (A, AF;_) diagram even without the envelope. However, this effect is cut off when

the disk surface becomes concave towards the midplane. This occurs at a radius of about 10 AU,

where the temperature at the surface Y = 2/3 reaches the ice condensation point. As a result, the

envelope is still needed to explain the fiat spectrum over the full observed range of wavelengths.

Finally, we note that many more details of the mechanism powering FU Orionis outbursts

can be extracted from time-resolved spectroscopic observations. Though available data are sparse,

it is already known that various spectral features appear and disappear during the evolution of

the individual objects. Useful in the future would be spectra from 0.1-100 ttm, spaced in time to

resolve rapid changes in the light curve. For example, BBW76 is a recently-discovered FU Orionis

object which is currently fading (EislSffel, Hessman & Mundt 1990; Reipurth 1991). Once a light

curve is available covering a sufficient fraction of an outburst, a disk model can be constructed for

this object. Comparison of SEDs calculated from the model against those observed over time will

provide an even more rigorous test of the validity of the outbursting accretion disk model.

These calculations were possible because David Alexander graciously calculated for us

the frequency-dependent opacities. Scott Kenyon was quick to answer our questions. We also

learned from discussions with Pat Cassen, Martin Cohen, Doug Lin and Diane Wooden, and the

recommendations of an anonymous referee. The work was supported by grants NAGW-3408 and

NAGW 4456 from the NASA Origins of Solar Systems Program, and by a special NASA theory

program which supports a joint Center for Star Formation Studies at NASA-Ames Research

Center, University of California, Berkeley, and University of California, Santa Cruz. The research

made use of NASA's Astrophysics Data System Abstract Service, and the Simbad database,

operated at CDS, Strasbourg, France.
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ABSTRACT

A model for the magnetic dynamo process in accretion discs is proposed that does

not involve underlying turbulent motions. The key ingredient of the model is the

magnetic buoyancy. Combined with Coriolis twist, the buoyant motions result in a

backcoupling between azimuthal and radial components of the field. It is shown that

for reasonable values of the free parameters of the model all three components of the

magnetic field reach a stable saturation state consistent with the basic assumptions

underlying the model.

Key words: accretion, accretion discs - MHD.

I INTRODUCTION

To amplify and maintain an originally weak magnetic field,

the classical kinematic dynamo model (see e.g. Parker 1979,

Section 19) employs both a regular large-scale and a chaotic

small-scale (turbulent) velocity field. The large-scale velocity

field is just rotation, whereas the turbulent velocities are

usually associated with thermal convection. As a by-product

of the dynamo action, a fluctuating small-scale magnetic field

is created, whose amplitude is assumed to be much smaller

than the characteristic intensity of the large-scale (mean)

field. Another key assumption of the model is that both

large-scale and turbulent flows are not affected by magnetic

fields. Pudritz (1980), who calculated non-linear effects for a

kinematic dynamo in an accretion disc, found, however, that

fluctuating fields much more energetic than the mean field

develop, strongly reducing the intensity of turbulent motions.

As a result, the mean field cannot grow above a certain
critical value, at which the turbulence is shut down. The

mean field was estimated to saturate at t3 < 75 (where 13is the

ratio I'Jt',,, of gas to mean field magnetic pressure), i.e. far

away from the thermal equipartition value of/3 = 1 suggested

as a natural dynamo limit (Galeyev, Rosner & Vaiana 1979).

Recently, more serious problems with the classical dynamo

have been reported. A study of the Galactic dynamo by

Kulsrud & Anderson (1992) revealed that rapidly growing

fluctuating fields may substantially modify the turbulent flow

before any significant amplification of the mean field is

achieved. A similar pessimistic conclusion was reached in a

general study of astrophysical kinematic dynamos by

Vainshtein & Cattaneo ( 1992): fluctuating magnetic fields arc

* UCO/Lick Observatory Bulletin No. 1318.

readily generated at tiny scales (where they reach equipar-

tition values), while the mean field remains extremely weak.

Objections against the kinematic dynamo have also been

raised by Hawley & Balbus 11992), who note that the classi-

cal model may not be applicable to accretion discs, as in that

case even weak fields are able to significantly influence the

fluid flow, thus invalidating the assumption on which the

kinematic dynamo is based. This effect is clue to the

magnetorotational instability (hereafter MRI, a term coined

by Goodman & Xu 1994), whose importance has been

revealed in a series of papers by Balbus & Hawley (see

Hawley, Gammie & Balbus 1995 and references therein).

Yet another, long-known objection against the kinematic

dynamo in accretion discs is that the origin of the turbulent

velocity field remains unknown. The only commonly

accepted source of turbulent motions in accretion discs, the

convective instability, is usually effective in limited regions of

a disc only (see e.g. Stella & Rosner 1984), and thus it cannot

solve the problem.

The idea that magnetic fields could be amplified without

any assumed (or underlying) turbulence is not new. Its origin

goes back to the early 1970s, when it was noted that the

magnetic buoyancy, which is capable of generating turbulent

motions by itself, might be an important factor in the dynamo

process (Parker 1971). Meyer & Meyer-Hofmeister (1983)

were the first to employ that idea for an estimate of the

saturation state parameters in accretion discs. The efteel of

magnetic buoyancy on accretion discs was also discussed by

Galcycv ctal. 11979) and Stella & Rosncr (1984). The first

complete disc dynamo model entirely independent of any

underlying turbulence was proposed by Tout & Pringle

(1992). In that model, the Parker instability (Parker 1979,

sections 13.4 and 13.5) due to the azimuthal field com-
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ponent, and the magnetorotatkmal instability due to the
vertical field component arc employed to close the dynamo

loop. Almost simultaneously, a Galactic dynamo model

based on magnetic buoyancy was proposed by Parker

(1992). Finally, in a recent stellar dynamo model of Tout &

Pringle (1995) the dynamo feedback is provided by the
differential stellar rotation combined with 'turnover flows'

generated by magnetic buoyancy.

Based on the above discussion, we find that a dynamo able

to amplify magnetic fields without an)' underlying chaotic

small-scale motions is a very promising idea. In particular,

under the conditions characteristic of an accretion disc

interior (strong shear, strong vertical stratification due to

variable gravitational acceleration in the direction perpendi-

cular to the mid-plane) a dynamo powered by hydromagnetic

instabilities that tap the energy directly from the orbital

motion becomes a possible solution to all problems of the

classical kinematic scenario. In the present paper we discuss

a simple disc dynamo model based on processes outlined in a

recent paper by R62yczka, Bodenheimer & Lin (1995), who

performed a numerical study of buoyancy effects in accre-

tion discs. Our approach is generally similar to that of Tout &

Pringle (11992, 1995). For reasons explained in Section 2,

however, we do not rely on the MR1 to close the dynamo

loop, and the dynamo feedback is provided by magnetic

buoyancy and helicity of the motions the buoyancy induces.

We also differ from Tout & Pringlc in the assumptions con-

cerning the field loss from the disc, for which we assume a

more general form. Our dynamo is described by a set of equ-

ations which are introduced and discussed in Section 2. The

solutions of the dynamo equations are presented in Section
3. in Section 4 we summarize the results and discuss their

implications for the structure and dynamics of an accretion
disc.

2 THE DYNAMO EQUATIONS

To explain the physical basis of our model we shall begin

with a brief summary of the simulations performed by

R62yczka et al. (1995), who have flfllowcd the evolution of a

seed poloidal field in an accretkm disc under the assumption

of axial symmetry. Thcy find that thc azimuthal component

of the field B_ grows due to shear until the thermal equipar-

tition value of fl= 1 is approached. The growth of Bz is
stopped by formation of buoyant plumes with vigorous

internal motions, leading eventually to partial ejection of the

field from the disc, fragmentation of the seed and the

establishment of a turbulent velocity ficM. Shortly afterwards

a quasi-stationary state is reached, in which the poioidal field

assumes a patchy structure, with the medium between

patches being either more weakly magnetized than the

patches themselves or entirely field-free.

R62yczka ct al. (1995) argue that the patches are likely to

follow the same evolutionary pattern as the initial seed, and

they point out that if the assumption of axial symmetry were

relaxed, the Coriolis force acting on buoyant elements of disc

gas would result in helical twisting of the azimuthal field lines

and amplification of the poloidal field. An example of three-

dimensional effects that could counteract the dynamo actkm

instead of supporting it is given by I lawley ct al. (1995), who

find that weak azimuthal fields are prone to the MRI which

results in magnetoturbulcncc. Therefore, it is conceivable

that B0 could saturate far below the thermal equipartition

value, before magnetic buoyancy becomes important.

Hawley et al. (1995) point out, however, that as time

advances the wavelength of the dominant azimuthal mode of

the MRI becomes longer, and indeed their fig. 8 shows the

field organizing itself into more coherent structures which

may eventually evolve into nearly axisymmetric patches.

The simulations of R62yczka et al. (1995) indicate that,

because of the patchy structure of the poloidal field in the

saturated state, the MRI would not significantly influence the

vertical component of the field B:, and that the generation of

the radial component B, from B_ due to MR1 would be rather

inefficient. Thus we assume that the key link in the dynamo

loop is not the B:_ B_ transformation due to the MRI [as

proposed by Tout & Pringle ( 1992)], but the BO _ B_ transfor-

mation due to the helical twisting of B_ lines. Further
discussion of this issue is deferred to Section 4. Here we

would only point out that the MRI is by no means unimpor-

tant in our scenario, as it causes the magnetized region to

spread radially, resulting in the expansion of an initially

localized dynamo process both towards the centre of the disc

and tow'ards its outer edge.

Both R62yczka et al. (1995) and Hawley et al. (1995) find

that the field is likely to change its orientation on a length-

scale which is small compared with the disc thickness. This

finding corroborates another assumption made by Tout &

Pringle (1992), according to which the main source of

magnetic flux loss within the disc is reconneclion. Since,

however, according to Rd2yczka et al. (1995) and Hawley et

al. (1995) all three field components may change sign on
scales that arc small in at least one direction, we do not

restrict reconnection to B: [as was done by Tout & Pringle

( 1992)1, but allow for it also in the case of B¢ and B,.

Following Tout & Pringle (1992), we write our equations

in terms of B_, B. and B, which should be regarded as local

average values of the field components. As indicated in the

preceding paragraph, we assume that every component of

the field is destroyed by rcconnection. The reconnection

proceeds at a rate given by the ratio of the momentary value

of the component and an appropriate time-scale r,_., (which

may be different for different components). Additionally, and

in accordance with Tout & Pringlc (1992), B# and B_ are lost

from the surface of the disc due to the undulating modes of

the Parker instability (Parker 1979, Section 13) at rates given

by the ratios of their momentary values to a buoyant time-

scale rp.

We assume that the disc is nearly Keplerian. Thus, Be is

created from B, due to shear at a rate

dB_= 3_x
B,, (1)

dt T

where T is the local Keplerian orbital period. The same

Parker instability that results in loss of Be and IL from the

disc generates the vertical component of the field at a rate

dB: = B,+ h',. _2)

dl rl, rp

The gain terms given by equations ( 1 ) and (2) are the same as

in q_mt & Pringle (1992). To complete the dynamo we have

to define the rate at which the radial field is generated from



Bo. Our key assumption is that the buoyant elements acquire

an angular speed equal to the epicyclic frequency _c. As in a

Kcplerian disc h- is equal to the local angular orbital velocity

Q, we effectively assume that the azimnthal field lines within
the clemcnt are rotated on a time-scale of the local orbital

period, i.e. that B, is generated at a rate

dB, = Be. (3t
(It T

Admittedly, this may seem to bc an overestimate. Our B,

generation rate is not, however, greater than that found by

Tout & Pringle (1992), and furthermore the saturation value

of our dominant field component (B#! turns out to be only

weakly dependent on this assumed rate (see below).

Assembling all gain and loss terms for each field component

we obtain the final set of equations

dB 0 37t Bo B_
-= B - -- _ , (4'1

tit T ' r_. r,,

dB, B_ B, B,

dt = 7_ rr rii_, (5)

dR. Bo B B
m= + ¢-:_ (6)
dt r_, rp r_,.c"

in which the buoyant and recombination time-scales have yet

to be specified.

If 1)',_>> B,, the characteristic time-scale of buoyant

motions is given by

I1

r,,= 'l w',' (7)

where 1t is the half-thickness of the disc given by the

standard expression

•f2 {',

//= (s)
Q

l."?xis the Alfvdn velocity calculated from Be,, and r/is a para-

meter in the range 2-5 (Tout & Pringle 1992). When we

integrated the equations with the formula (7) for q,, it turned

out that B, approached ().5B_ in the saturation state, which

prompted us to adopt a more general, heuristic expression

11

where I,."'_ is the Alfvdn velocity calculated from B,. That

modification, however, did not result in any significant

changes in the saturation state.

The characteristic time-scales for reconnection, r,_c.f, of
the azimuthal and radial fields are defined as

_,,_ 6z 1

r,_.,- f i,_,_, I:l II)

wherc _: is an average vertical size (thickness) of a
magnetized patch, and F is a parameter related to the
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magnetic Reynolds number, in the range of 0.02-0.1 (Tout &

Pringlc 1992). In the following, an effective thickncss Az will

be consistently used instead of the ratio _z/F. Following Tout

& Pringle (1992) wc assume that the vertical field can

reconnect both in the ¢ and r directions, on characteristic

time-scales r_.and r,':_i_,respectively. The effective reconnec-

tion time-scale r_,. is then given by

(r_,) _= r:_i '+( =' I _a,, r ....... (11)

gr ¢a / "
Both r_ and r,_._ arc defined analogously to r,;.,, m equation

(10), with az replaced by characteristic length-scales )4_,. and

2(,'._ fl)r the reconnection of the vertical field in the _ and r

directkms, respectively. For an estimate of ,a._,. wc modify thc

prescription of Tout & Pringle (1992)(their formulae 2.3.2

and 2.3.4-2.3.6 ) to obtain

9 1 l '_
2(': = - kz, (12)

where Az replaces the MRI length-scale. Provided that the

wavelength of the buoyant instability in the azimuthal direc-

tion is shorter than the characteristic azimuthal extent of a

magnetized patch, i.e. that the patch undulates along its

azimuthal extent [which we expect to happen based on simu-

lations reported by R62yczka ct al. (1995)], we may simply

approximate 21:_ by A=. Finally, we relate A= to ti by the
formula

A= =_tl, (13)

whcrc _ is a free parameter which, given the range of F in

equation (10), could in principle vary in the range 0 < 6 < 10

(at e = 10 the average geometrical thickness of a patch 6z

approaches ft). However, independently of the field strength,

there is always a small-scale structure clearly visible in

meridional cross-sections of both thc Hawley el al. (1995)

and Rd2yczka et al. (1995) models, indicating that c_z. in

excess of - 0.11t is rather unlikely. On thc other hand, very

small e results in extremely large loss terms in equations

(14)-(16), practically inhibiting the dynamo effect. For these
two reasons, we restrict _:to vary between 0.1 and 1.(), i.e. we

assume that the upper limit fl.)r the characteristic scale of

magnetic structures generated in the disc is of thc ordcr of
0.1/1.

Taking T as a unit of time, and c,_4_p (whcrc ,o is the

local density) as a unit of magnetic field intensity, we can

rewrite equations (4)-(6)in the form

db¢, .,/2a . ,/2x
_-3_#,-m t,0 _,0+h,)- b_0 (14)
£1/ Y] 6

dh'=t,0 J2_ _,,(_,o+_, 1-J2_ _ 115)
dr' - r/

db:_'J2_(b,+b_)e_4_2_b! (1+3"_ _ /7)
dr' r/ ' 2 b_ '

(16)

where time t' and field components bo, h, and h_ are now

expressed in the units defined above. We decided not to

incorporate the numerical factor of ,_;t into the parameters

and _1in order to preserve their straightfi_rward relation to
the disc half-thickness 11.
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3 SOLUTION OF THE DYNAMO

EQUATIONS

The set of ordinary differential equations consisting of
equations (14)-(16) was integratcd numcrically using the
fifth-order Runge-Kutta mcthod with adaptive stepsizc
control, as implemented in the Numerical Recipes routine
ODEINT(Press et al. 1992), until an equilibrium (saturation)
state was reached. To examine dependence of the equi-
librium fields on initial conditions, numerical integrations
were carried out for a wide variety of small initial fields. Fig.
1 shows the results for initial fields, in units of c_f4_p, of

b_=b r=b:=10-2,10-_'and 10 tZ,with r/ = 2.5 and _ = 0.1.
Thc system moves to the same equilibrium in each case -
that is, the saturation field does not depend on the strength of
the initial field. Additionally, analytic equilibrium solutions
to cquations( 14)-(16) were found by setting time derivatives
to zero and solving the resultant set of three algebraic non-
linear equations. We found that the set has only one real,
non-zero solution. For the (q, e) pairs checked, the equi-
librium values returned by the numerical integrator agree
with the analytic solution to better than four significant digits.

As a test of the stability of the equilibria, the integration
was also run with initial conditions both larger and smaller
than the equilibrium values by 1 per cent. The system camc
to the same equilibria as in the cascs with small initial fields,
i.e. the saturated state of the dynamo proved to be stable.

To show the dependence of the saturation field on the two

parameters r/and e, numerical integrations wcrc run to cqui-
librium over a grid of (q, E) combinations. The grid is 11
points on a side, evenly spaced in r/and in Iog,_ E, and covers
the region where 2<q_<5 and 0.1_<__<1. The results are
plotted in Fig. 2, and selected points are listed in Table 1. As

can bc sccn in Fig. 2, the strongest component of the field at
saturation is b_, with h, smaller by a factor of about 2. For
_= 1, h: is only slightly smaller than b_. When _ =0.1, b. is
less than b_by 1-1.5 orders of magnitude. Also from inspec-
tion of Fig. 2, dependence of the field components on q is
weak, because the largest loss terms arc the reconnection
ones, which arc determined by _.

To demonstrate the importance of the reconncction terms,

we removed them from the boand b_cquations (14) and (I 5),
and repeated the integrations. The much smaller rcmaining
loss terms due to the Parker instability led to large intensities
of saturation fields, such that the magnetic pressure was
comparable with or larger than the gas pressure over the
(r/, t) region examined. For example, for r/= 2.5 and _ = 0.3,
the results were b,_= 1.3, b_ = (I.42 and b: = (1.27.

Finally, we examined the sensitivity of the saturation fields
to the Coriolis gain term in the b_equation (15) by increasing
it by a factor of 2. As a result, the value of the dominant

component b_ incrcascd by a factor of 1.25, while h_ and b
changed by factor of 1.6-1.7. Effects of comparable magni-
tude but opposite sign wcrc observed in another integration,
with the Coriolis term decreased by a factor of 2.

4 SUMMARY AND DISCUSSION

We demonstrated that our dynamo equations yield stable
saturation states to which the amplification process
converges after a few Keplerian periods. The saturated field
strength is independent of the initial seed field strength. It
does depend, however, on two parameters, one charac-
terizing the growth time of undulations on azimuthal field
lines (r/), anti the other the average thickness of magnetized

patches in the mcridiona[ plane of the disc (e). Slowly

->
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Figure I. The c¢_nvcrgencc of the solutions of the dynam_ cquali.ns t<_a unique saturation state.
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Figure 2. The dependence of satnration field compor_ents on the parameters r/and ,,. Fields arc in units of c,V'4_o.

Table I. Saturation field strengths versus

Parker time-scale parameter r/ and re-

connection parameter _:. l:iclds ;_Ire ill

units of c,_. Starling field com-

ponents in each case wcrc h,=h, =h.
= 10 i:

r/ e b_ b_ b_

2 0.1 0.091 0.042 0.0043

2 0.3 0.23 0.10 0.029

2 1 0.50 0.20 0.16

2.5 0.1 0.093 0.043 0.0036

2.5 0.3 0.24 0.11 0.025

2.5 1 0.56 0.23 0.15

5 0.1 0.097 0.045 0.0019

5 0.3 0.27 0.12 0.015

5 1 0.72 0.31 0.12

growing undulations (large _1) lead to smaller surface loss

rates of B o and B, and to larger saturation values of those

txso componcnts. On the other hand. the rate of B: genera-

tion is lower for larger r/, resulting in a smaller saturation

vah, c. The dependence of the saturation state on r] is rather

weak. however; the effect of changing _ is much more

strongly pronounced. Smaller _ enhances the reconnectkm

loss and results in a general decrease of the saturated field

strength.

Wc showed that with reconnection loss terms removed

from the 1]_ and B, equations (equations 14 and 15) the field

saturates at high values corresponding to fl-< 1. Let us note

that at fi _- 1 thc Alfvdn velocity, which may be regarded as a

reasonable approximation of buoyancy-generated velocities

{Meyer & Meycr-Hofmeister 1983: Tout & Pringle 1992,

1995) is comparable with the velocity of sound c,. The

characteristic time-scale h_r the escape of the field from the

disc is then II/c, = l/f2. Moreover, for fl < 1 a rapM increase

of dissipation due to shock waves (not accountcd for in our

model) is expected. Thus, fl= 1 seems to be a reasonable

natural limit to field amplification. It may be noted that the

same conclusion was rcached in the case of a kinematic

(convcctivc) disc dynamo by Galcycv el al. (1979), who

pointed ottt that at fl<l the effects of magnetic tension

would become strong enough to significantly suppress the

convection. Our conclusion is that both the rcconnection

lctms discusscd in the present paragraph should be retained

in the dynamo equations.

In the saturation state the strongest component is Be, with

B, generally smaller by a factor of - 2, and tL smaller by
another factor of 3-10. Thus the structure of the field in the

saturation state is cntirely different from that obtained by

Tout & Pringle (1992), who found B:_-I;_, and B,-_ 0.15B 0.

It is, however, consistent with the assumed structure of the

field, which in a meridional cross-section of the disc may be

described as an ensemble of radially ehmgated patches with

B_ constituting the main component of the poloidal field, and

with the azimuthal field being still stronger. (Let us note that

a patch of the poloidal field in lhe meridional plane corre-

sponds to a bundle of toroidal field lines.) The basic

uncertainty of our model concerns the Coriolis gain term in

the B, equation. We showed that an increased efficiency of tt,

generatkm results in a relative increase of l;, with respect to

Be, while a decreased efficiency results in a relative dccrcasc

of B. with respect to B0. Since at the standard efficiency of

Coriolis twist introduced in Section 2 B, seems to be already

rather strong, and B. rather weak comparcd with h' 0, we
conclude that the Coriolis twist rate shoukt not differ much

from the assumed value of I/T if a saturated field with

dominant B_ and non-negligible B_ is to be obtained.

Its simplicity notwithstanding, our model produces

entirely coherent results. First of all, reasonable saturated

field strengths, somewhat below thermal equipartition, are

obtained from reasonable assumptions concerning the range

in which q and e arc allowed to vary. Secondly, the saturation

values of all field components become consistently smaller

w,ilh decreasing ,_, which means that fields with significant

small-scale structure arc weak. This is cxactly what one

expects, as at a lower field intensity the magnetic tenskm is

weak and the field lines may easily bc wound up very tightly.

Thirdly, the saturated field remains constant in time, as

opposed to the Tout & Pringlc (1992)model in which the



1184 M. Rb_yczka, N. J. Turner and P. Bodenheimer

saturated field oscillates on an approximately orbital time-

scale with an amplitude reaching - 60 per cent of the mean

value. Fourthly, as mentioned by R6_yczka ctal. (1995), even

though our model involves turbulent motions it is free from

the basic problem of the turbulent kinematic dynamos that

have been raised by Kulsrud & Anderson (1992) and

Vainshtein & Cattaneo (1992). While in the kinematic

dynamo the turbulence may prevent amplification of the

mean field, in the buoyant dynamo it does not set in until the

azimuthal field has become strong enough to induce buoyant
motions.

Tout & Pringlc (1992) obtain an oscillating field because

of the shut-off of the MRI at high B:, resulting in a vanishing

gain term in the Br equation (Be generation is resumed as
soon as B. falls below a critical value duc to continuous

reconnection). For the shut-off to occur, however, the B_ lines

should extend throughout the whole thickness of the disc

(connecting, possibly, to an external field). On the basis of

numerical simulations reported by Hawley et aL (1995) and

R6_:yczka et al. (1995) we feel, however, that the internal disc

field is more likely to be organized in rathcr thin and flat,

radially extended patches. The effect of the MRI acting on a

patch is just radial stretching, and there is no chance for a

shut-off to occur. Thus we feel that the scenario proposed by

_Ik)ut & Pringle (1992) is more appropriate for a disc

permeated by an externally connected vertical field. If such a

field is absent, i.e. if one is interested in amplification of

purely internal disc fields, our scenario seems to be more

appropriate.

In conclusion we would like to stress that the simple

model presented here is not so much meant to represent real

astrophysical discs as to draw attention to hitherto

unexplored possibilities. We merely dcmonstrated that a self-

consistent scenario for field amplification and maintenance

in accretion discs based on magnetic buoyancy and Coriolis

effects is possible, and wc believe that further research on

this subject is highly desirable.
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ABSTRACT

We follow the evolution of a closed loop of relatively weak poloidal magnetic field, originally embed-
ded somewhat above the midplane in a hydrostatic accretion disk. The equations of magnetohydro-
dynamics are solved on a numerical grid in axisymmetric geometry. Viscous heating, radiative transfer,
and the horizontal and vertical components of the gravity of the central star are taken into account. As

the evolution proceeds, toroidal field is built up as a result of shear in the disk, and the field becomes
buoyant as a result of interchange modes of the Parker instability. The effective wavelength of the
buoyant instability, and its dependence on the strength of the initial field loop, are found to be consis-
tent with a linear stability analysis. The buoyancy results in turbulent motions and expulsion of some
field from the disk. Eventually, a saturation state is reached, in which the field assumes a patchy struc-
ture, and the ratio of gas to magnetic pressure stabilizes in the range 1-5. Outward angular momentum
transfer and an accompanying radial expansion of the magnetized region occur as a result of magnetic
torques, and an equivalent or-viscosity parameter is estimated. The implications of these results on the
generation of a magnetic dynamo in a disk are discussed.

Subject headinqs: accretion, accretion disks instabilities -- MHD

1. INTRODUCTION

The observational evidence for magnetic fields in accre-
tion disks is in most cases circumstantial. The only disk for

which measurements of magnetic field strength have been
made is the primitive solar nebula, with fields of 0.1-1.0 G
estimated from the residual magnetization of carbonaceous

meteorites (Brecher 1972; Butler 1972). However, there are
good reasons to believe that accretion disks are permeated
by fields of either external or internal origin. In the first
case, the field can be generated by the central object (Shu et
al. 1994, and references therein) or dragged into the disk
from the ambient medium (Lubow, Papaloizou, & Pringle
1994, and references therein). In the second case, the disk
itself generates and maintains the field, owing to the

dynamo effect (Tout & Pringle 1992, and references therein).
In this paper we concentrate on the latter possibility.

While it was pointed out almost a quarter of a century
ago that torques from internal fields could be responsible
for the anomalously high effective viscosity of accretion

disks (Shakura & Sunyaev 1973), the details of the actual
processes are still not too well understood. An important
advance was made in a series of papers by Balbus & Hawley

(see Hawley, Gammie, & Balbus 1995, and references
therein, hereafter the series is referred to as BGH). These

papers deal with a magnetorotational (term coined by
Goodman & Xu 1994) instability that is able to amplify
originally weak disk fields of external origin by up to several
orders of magnitude, and to induce ordered "two-channel"
flow (Hawley & Balbus 1992) accompanied by an efficient
angular momentum transfer. However, the more likely non-
linear outcome of the instability was found to be a hydro-
magnetic turbulence, for which the Shakura & Sunyaev

UCO/Lick Observatory Bulletin, No. 1324.
2 Warsaw University Observatory, AI. Ujazdowskie 4, PL-00478

Warszawa, Poland; mnr_a,hydra.astrouw.edu.pl.
3 Copernicus Astronomical Center, uI.Bartycka 18, PL-00716

Warszawa, Poland.
4 University of California Observatories/Lick Observatory, Board of

Studies in Astronomy and Astrophysics, University of California, Santa
Cruz, CA 95064; peter_'a'lick.ucsc.edu.

effective viscosity parameter _ ranged from 0.02 to 0.7,
depending on the initial configuration assumed for the field.
The most important conclusion of BGH is that with the
help of magnetic fields one can induce both turbulence and
angular momentum transfer in hydrodynamically stable
regions of accretion disks. There are, however, two impor-
tant physical effects that are not included in the simulations
presented by BGH: magnetic buoyancy and resistivity. As
the authors write, "buoyancy effects will undoubtedly have

an important effect on the ultimate nonlinear fate of the
disk" (Hawley & Balbus 1992).

Hawley & Balbus (1992) also note that the classical kine-
matic dynamo model (Parker 1979, § 19) may not be applic-
able to the amplification of internal fields in accretion disks,
since even weak fields are able to significantly influence the
fluid flow, thus invalidating the assumption on which the

kinematic dynamo is based. Another, long-known objection
against the kinematic dynamo in accretion disks is that its
operation requires an underlying turbulent velocity field
maintained by an essentially unidentified factor. The only
commonly accepted source of turbulent motions in accre-
tion disks, the convective instability, is usually effective in

only limited regions of a disk (see, e.g., Stella & Rosner
1984), and thus it cannot solve the problem. The idea that
the magnetic buoyancy might be an important factor in the
dynamo process was formulated by Parker (1971). Meyer &
Meyer-Hofmeister (1983) were the first to employ that idea
for an estimate of the saturation state parameters in accre-
tion disks. The effect of magnetic buoyancy on accretion
disks was also discussed by Galeyev, Rosner, & Vaiana
(1979) and Stella & Rosner (1984). The first complete disk
dynamo model entirely independent of any assumed turbu-
lence was proposed by Tout & Pringle (1992). In that
model, the Parker instability (Parker 1979, §§ 13.4 and 13.5),
arising from the azimuthal field component, and the magne-
torotational instability, arising from the vertical field com-

ponent, are employed to close the dynamo loop. Almost
simultaneously, a Galactic dynamo model based on mag-
netic buoyancy was proposed by Parker (1992). Finally, in a
recent stellar dynamo model of Tout & Pringle (1995), the

371
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dynamofeedbackisprovidedbythedifferentialstellarrota-
tioncombinedwith "turnoverflows"generatedbymag-
neticbuoyancy.

Recently,theclassicalkinematicdynamohasalsobeen
questionedforreasonsquiteindependentof theBGHcon-
clusionsconcerningsignificantdynamiceffectsof weak
fieldsinaccretiondisks.AstudyoftheGalacticdynamoby
Kulsrud& Anderson(1992)revealedthatrapidlygrowing
fluctuatingfieldsmaysubstantiallymodifytheturbulent
flowbeforeanysignificantamplificationofthemeanfieldis
achieved.A similarpessimisticconclusionwasreachedina
generalstudyof astrophysicalkinematicdynamosby
Vainshtein& Cattaneo(1992):fluctuatingmagneticfields
arereadilygeneratedat tinyscales(wheretheyreachequi-
partitionvalues),whilethemeanfieldremainsextremely
weak.Again,undertheconditionscharacteristicofanacc-
retiondiskinterior(strongshearandstrongverticalstratifi-
cationowingto variablegravitationalaccelerationin the
directionperpendicularto themidplane),a dynamowhich
is poweredby hydromagneticinstabilities,anddoesnot
requireanyunderlyingturbulenceto operate,becomesa
possiblesolutiontotheproblem.

Basedon theabovediscussion,weexpectthemagnetic
buoyancyto playa veryimportantrolein accretiondisks.
The buoyancy can modify significantly the magneto-
rotational instability investigated by BGH, and it can con-
tribute in a significant (possibly even dominant) way to the
processes that amplify and maintain the internal magnetic
field of a disk. Last but not least, it may be a crucial factor
responsible for the generation of the disk's corona (Galeyev
et al. 1979). The latter issue, however, will not be considered
here. The aim of the present paper is to follow the develop-
ment of the buoyant magnetic instability in a realistic accre-
tion disk environment, taking into account as much physics
as possible given limited numerical methods and computa-
tional resources. In particular, we attempt to find answers
to the following questions:

1. What are the physical details of the processes that
transform the primary orbital energy into the field and
kinetic energies?

2. Is the magnetic buoyancy indeed a vital factor limiting
the growth of the field inside the disk, as suggested by
Galeyev et al. (1979)?

3. Can the magnetization initiated by a weak seed field of
limited extent spread over large regions of the disk ?

4. How sensitive are the properties of the saturated state
to assumed initial conditions (seed field strength and
location)?

5. Can the effective viscosity of a magnetic disk be esti-
mated?

To that end, we perform numerical simulations of the
evolution of a seed field in an accretion disk under the

assumptions of axial symmetry and ideal magnetohydro-
dynamics. The technical details of the simulations are dis-
cussed in § 2. The results are presented in § 3, which also
contains a discussion of physical processes responsible for
the evolution of the seed field and a linear stability analysis.
The results are summarized and discussed in § 4, together
with some prospects for future research.

2. SIMULATIONS" TECHNICAL DETAILS

Following the line of thought pioneered by Shakura &
Sunyaev (1973), let us assume that the effective viscosity in

accretion disks is of hydromagnetic origin (BGH; Tout &
Pringle 1992 and references therein). Alternative viscosity
sources, such as thermal convection (Lin & Papaloizou
1980; Kley, Papaloizou, & Lin 1993) or gravitational insta-
bility (Paczyfiski 1978; Larson 1984; Laughlin & Bodenhei-
mer 1994) will not be considered. The ultimate aim of MHD

simulations then would be to obtain a self-consistent model,
in which radiative energy loss is balanced by heat gener-
ation arising from orbital energy release induced by
magnetic torques. At the present moment, neither

computational resources nor physical understanding of the
processes involved seem to be sufficient to tackle that
problem; therefore, we feel that a gradual approach is more
appropriate. Our strategy is to begin with simple models,
allowing for selected physical processes and limited inter-
actions between the disk and the magnetic field, and to
extend them step by step toward greater complexity. Thus,
the simulations presented below are not directly related to
any class of real astrophysical disks. Rather, they should be

regarded as laboratory experiments set up to investigate the
response of magnetic fields to an environment which con-
tains the most important ingredients of a real disk's interior.

2.1. Numerical Methods and General Assumptions

The simulations have been performed with the help of the
two-dimensional hydrocode originally described by
R6_yczka (1985) and recently adapted to deal with prob-
lems of ideal MHD, following the recipes of Stone &
Norman (1992). The equations solved are the continuity
equation (1), the energy equation (2), the momentum and
angular momentum equations (3), and the induction equa-
tions (4). The coordinates used are Eulerian cylindrical (z, r,
_), and rotational symmetry with respect to the axis r = 0
as well as mirror symmetry with respect to the plane z = 0
are assumed. For these coordinates and symmetries, the
code successfully passed all tests suggested by Stone &
Norman (1992). The basic variables are density p, internal
energy density e, specific angular momentum J, the azi-

muthal component of the magnetic field B,, and velocity
components v_ and z,,, together with corresponding poloidal
field components B z and B r in the z- and r-direction, respec-
tively. In equations (1)-(4) B z, B,, and Be are the com-
ponents of the vector B, while v_, v,, and J/r are represented
by the vector v:

_t + V (pv) = O (I)

(3e

Jt + V" (ev) = -- Pg V- v - V" Fra d - _" _, (2)

+ v)v = -vv - pva) + (v × B)

× B - e=r_ div (_ , (3)

(3B
-V x(vx B), (4)

(3t

where Pg in equations (2) and (3)is the gas pressure, related
to p and e by the equation of state, Q and E are the
viscous stress tensor and the symmetrized tensor of velocity
derivatives, respectively, F,, d is the radiative energy flux,

and the factor _,,,_, which is assumed to be equal to unity in
equations for v, and v, and to zero in the angular momen-
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tumequation(seethediscussionbelow),hasbeenintro-
ducedtosimplifythenotation.

Accordingto theresearchstrategyoutlinedabove,we
focuson thedynamicalaspectof thedisk-fieldandfield-
diskinteractions,andweadopta simplifiedscenariofor
heatgenerationin thedisk.Weconfineourselvesto the
frameworkofidealMHDandassumethattheresistivityof
themediuminwhichthefieldevolvesisnegligiblysmall,i.e.,
thatthephysicaldissipationofthefieldisnegligible.Conse-
quently,in ourapproachtheheatgeneratedbyreconnec-
tionarid/ordissipationofthefieldisomittedfromequation
(2),andthefieldcanonlyaffectthethermalbudgetof the
diskthroughthePgdV work arising from motions it excites.
Instead of the magnetic dissipation, we introduce an
assumed :_-type viscous dissipation, and we include heat
gain from this effect. To satisfy these assumptions, equation
(2) includes terms allowing for heat gain or loss through
radiation transfer and heat gain through viscous dissi-

pation. We assume, however, that the angular momentum
redistribution arises only from magnetic torques, so that the
viscous term is omitted from the angular momentum equa-
tion. This issue is further discussed in § 2.2.

The hydrodynamical part of the code is based on a
second-order method with monotonicity constraints on

advected quantities. The MHD part employs a descendant
of the constrained transport method (Evans & Hawley
1988) to evolve the poloidal components of the magnetic

field, with the original algorithm supplemented by upwind-
ing in Alfv6n wave characteristics {Stone & Norman 1992).
With two exceptions the upwinding is applied to all terms in
the MHD equations that describe the evolution of, or are a
consequence of, magnetic fields. The exceptions are the
magnetic pressure term in the momentum equations, which
is treated in the same way as the gas pressure term, and the
advective term in the azimuthal field equation, which is

analogous to the advection terms for all scalar hydrody-
namical quantities. The MHD scheme conserves the zero
divergence of the magnetic field very well, but it suffers from
numerical reconnection of the field on the scale of the grid

spacing. While usually small in the regions of smooth flow,
the latter effect becomes significant in a turbulent medium
(see Hawley & Balbus 1992, and § 3.4 of the present paper).
The energy of the field that has been numerically dissipated
and/or reconnected is lost from the grid. The geometrical
constraints disable cyclonic motions in the disk, resulting in
a lack of feedback between the azimuthal and poloidal com-

ponents of the field. Nevertheless, we are forced to adopt
them for the simple reason that they make the problem

tractable with the present-day numerical methods and
resources.

2.2. Input Physics

The environment in which the fields evolve is an annulus

of a steady state :_-accretion disk orbiting a point gravity
source and embedded in a uniform ambient medium. The

central gravity source is assumed to be massive compared
with the disk, and the self-gravity of the disk is neglected.
Following R6_yczka, Bodenheimer, & Bell (1994), the
ambient medium and the gas within the disk are treated as

separate fluids. The interface between them is defined as an
equidensity surface, corresponding to the minimum density
Pi encountered in the initial disk model. At every time step,
each grid cell is labeled as belonging to the ambient medium
if its density is lower than 1.01 pi, and as belonging to the

disk otherwise. No flow is allowed across the interface from
the ambient medium into the disk, but it follows from the

labeling procedure that a residual mass transfer from
the disk into the ambient medium may occur. Effectively,
the ambient medium serves only as a means of imposing a

constant pressure boundary condition on the surface of the
disk, whereby the surface itself is allowed to move almost
freely across the grid. As the density of the ambient medium
is reset every time step to p_, the residual mass transfer from
the disk into the ambient medium results in a global mass
nonconservation. However, this effect is very small, and in
no case was more than 1"/,, of the mass initially contained in
the grid lost by the end of a simulation. The temperature of
the ambient medium (Tam0 is chosen so that the ambient
pressure roughly matches the lowest pressure encountered
in the initial disk model. Both in the disk and in the ambient

medium, the equation of state is taken to be that of an ideal

gas. The ambient medium rotates around the central mass
with rotational velocity equal to the local Keplerian veloc-
ity everywhere, and no other motions are allowed in it. To
meet the constant pressure condition, the ambient medium
is kept free of any magnetic fields by a procedure discussed
in § 3.4.

The initial disk model is in thermal equilibrium, with heat
sources from viscous dissipation balanced by radiative loss.
The viscosity coefficient is obtained from the local values of

p, P,, and f_ according to the standard co-prescription

2 _pc_2
(5)

r/- 3 f_ '

where

.2 7 _ (6)
_s z

P

and _ = J/r 2 is the local angular velocity (see, for example,
Ruden & Pollack 1991). Only the shear viscosity is taken
into account, while the bulk viscosity coefficient is set to
zero. Artificial viscosity is not applied anywhere in the disk,
and the 7-viscosity does not operate in the ambient medium
nor in the thin layer (1 2 grid ceils) immediately below the
surface of the disk. To obtain the viscous heat generation

rate that appears in the energy equation, all components of
the viscosity tensor (Tassoul 1978) are calculated. The vis-
cosity coefficient (eq. [5]) is used in the energy equation as
well as in the r- and z-components of the momentum equa-
tion, where it is found to have a stabilizing influence on the
flow. However, as we already mentioned in § 2.1, viscous
torques are consistently set to zero in the angular momen-
tum equation. We do this to avoid viscous flows of the type
discovered by R6_yczka et al. (1994) that could interfere
with (or even quench) the flows excited by Lorentz forces.
At the inner and outer radial boundary of the grid (r = r,,,,,

and r = r ..... respectively) all variables are simply reset at
every time step back to their initial values. This procedure
in fact has very little influence on the results of the calcu-
lations, because all simulations are stopped before the mag-
netized region of the grid approaches the boundaries.

For the radiation transfer, Rosseland mean opacities
based on solar composition are included in the manner
described by Bodenheimer et al. (1990). The main sources at
low temperatures (less than 3000 K) are molecules
(Alexander 1975) and grains (Pollack, McKay, & Christof-
ferson 1985). For the calculations reported in this paper, the
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minimumopticaldepthacrossthegridin thez-direction is
,,- 102. Most of this optical depth is associated with the disk,
which is embedded in a semitransparent ambient medium
(Zamb _ !). Thus, one may assume that the gas and radiation
temperatures are equal everywhere, and that the radiative
transfer equation may be approximated by the flux-limited
radiative diffusion equation. The latter is solved by the
alternating-direction implicit method described by Boden-
heimer et al. (1990). The radiation transfer solver requires
that the temperature at the boundary of the grid, Tb, be
specified. In the ambient medium we set Tb = Tamb, whereas
in the disk Tb is set equal to the local disk temperature.

2.3. Initial Disk Model

For the simulations presented here we employ an
_-model of a protoplanetary disk around a solar-like star.
However, our calculations are not meant to apply specifi-
cally to a protoplanetary disk, and there is no reason for
selecting that particular model, except for the availability of
detailed structural data. As we indicated at the beginning of
§ 2, our intention is to look for conclusions concerning the
response of magnetic fields to an environment containing
the most important ingredients of astrophysical disks in
general (strong shear, variable gravitational acceleration
and radiative energy transfer).

For the construction of the initial model, the method
developed by R62yczka et al. (1994) is used. First, accurate
one-dimensional vertical structure integrations for different
radii between rmin and rmax are carried out for • = 0.05,
/_/= 10 6 Mo yr t, and a central mass of I M o (see Bell &
Lin 1994 for details). The whole set of one-dimensional
models is then transferred onto the two-dimensional grid by
means of a linear interpolation and allowed to relax toward
a stationary state without magnetic fields. During the relax-
ation, viscous heating and two-dimensional radiative trans-
fer are included, but the viscous torques are omitted from

the angular momentum equation. The essence of the relax-
ation is the damping process, in which r, and v_ are multi-
plied every time step by a factor which is initially set to 0.95
and is subsequently increased up to unity. The relaxation is
stopped when the total kinetic energy of z- and r-motions
has stabilized. The relaxed models exhibit weak convective

patterns with typical velocities of 10-2 km s t, much below
the velocity of sound (0.3-3.0 km s t).

Two initial disk models are obtained for annuli (rmin, rmax)

of (0.2, 0.5) and (1.0, 1.5) AU, hereafter referred to as the
inner disk and the outer disk, respectively. The inner disk is
simulated on a grid consisting of 60 x 200 points uniformly
distributed in (z, r) and providing a resolution of ,_2 x 101°
cm. For the outer disk, grids of 65 x 120 and 125 x 230
points are used, providing resolutions of _6 x 10 _° and

_3 x 10 t° cm, respectively.

2.4. Initial Field Generation

In a relaxed model an initial loop of poloidal magnetic
field is generated, hereafter referred to as the seed loop. The
seed field is not generated by any realistic physical process,
and both its configuration and its intensity are arbitrary.
The sensitivity of simulations to the initial setup of the mag-
netic field is discussed in § 3.2 and 3.3. The loop-generating

procedure assumes a distribution of azimuthal currents j,_,
for which the azimuthal component of the vector potential

�lAx) = ;d2x ' j__(x'),Ix--xl (7)

is found, where x and x' are vectors in the (z, r)-plane, and it
is assumed that the region with nonzero current density has
a small radial extent compared to its distance from the disk
center. The poloidal B-field components are then obtained
from the general formula

B = v × A, (8)

which, in an axially symmetric case, reduces to

1 _9(rA_)
B. - (9)

" r (_r '

and

c_A_ (10)
B_ - _3z '

The numerically computed divergence of the poioidal field
thus obtained is zero almost to machine accuracy, and it
does not change noticeably during the evolution.

The seed loop is subsequently normalized to the desired
field strength Bo, which we identify with the maximum field
strength to be encountered in the loop. As all seed loops are
flat (with a typical width-to-length ratio Az/Ar ~ _ ; see Fig.
la), B 0 is a good measure of the initial radial component B,.
We carry out simulations for seed loops with Bo of 0.3 and
3.0 G, hereafter referred to as the weak seed and the strong
seed, respectively. The weak seed loop is generated in both
the inner and the outer disk, and the initial value of fl (the
ratio of thermal to magnetic pressure) within it approaches
~ 3 x 10'* and ,--300, respectively. The strong seed is gener-
ated in the inner disk only, corresponding to fl _ 300. For
reasons explained in § 3.1, all loops are generated above the
midplane of the disk. Let us also remark that one may

It!:J Ill!
FtG. t.--Strong seed in the inner disk shown at (a) t = 0.2 yr and (b)

t = 0.4 yr. lal Contours of constant density irt the (r, z)-plane {solid lines) are

separated by h log ,o = 0.34 with log Pm_, = -- 1 l.O. Contours of constant

fl, the ratio of gas pressure to magnetic pressure {broken lines}, are spaced

logarithmically between 100 at the edge of the loop and _ 5 inside the loop.

Arrows: Velocity vectors with length proportional to speed and wilh
V,..x = 0.15 km s _. The horizontal feature cutting the loop into two

nearly equal parts is the interface between regions with oppositely oriented

azimuthal field. (b) Contours of constant specific angular momentum (solid

lines} are separated by A log J = 0.01. Broken line: Contour of constant

fl = 3000. Arrows: Velocity vectors with Vm,X = 0,26 km s- _. The distance
unit on the horizontal and vertical scales is 2.76 x l0I_ cm. The left and
right closed J-contours correspond to a local minimum and a local
maximum old, respectively.
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expecttheweakseedintheouterdiskandthestrongseedin
theinnerdiskto evolvesimilarly,becausetheyhavethe
samefl-value. Our results reported in § 3.2 demonstrate
that this is indeed the case.

The insertion of the seed field into the disk destroys the
stationary equilibrium achieved as a result of the relaxation
procedure. To approximately restore it, the internal energy
density is adjusted locally according to

PL (ll)
e=eo Po + P,.'

where Pm is the magnetic pressure and e0 is the original
internal energy density. The relaxation procedure described
in § 2.3 is then repeated, with the contribution from P,,
taken into account. During the relaxation, the B-field is not
allowed to evolve, i.e., all time derivatives of all B-
components are set equal to zero. In general, the internal
energy adjustment brought about by equation (11) brings
the model so close to a stationary state that little relaxation
is needed. It must be stressed here that the relaxed model

with seed is not in equilibrium in the sense that it begins to

generate the B, component as soon as the field is allowed to
evolve. The aim of the somewhat tedious relaxation pro-
cedure is simply to exclude any spurious effects from artifi-
cially excited motions in the initial disk model.

3. SIMULATIONS: RESULTS

As stated in § 2.1, throughout the evolution the field is
assumed to be ideally frozen into the gas, i.e., the disk gas is
assumed to be perfectly conducting. Since the temperature
of our initial disk models is rather low (200 K < T < 2000

K), this assumption may hold only marginally, especially in
the outer disk (see Fig. la of Stepinski, Reyes-Ruiz, &
Vanhala 1993). The neglect of the finite resistivity of the disk
medium comes partly from our research strategy and partly
from the conviction that, at the modest resolution provided
by our grids, the effects of physical and numerical diffusion
would be difficult to separate. However, the finite resistivity
of the disk medium should definitely be taken into account
in future experiments.

3.1. Earl), Evolution

In all cases, the early evolution of a seed loop inserted
into an accretion disk follows the same general track. In the

first phase (the buildup phase), the B+ component is gener-
ated by shear at a rate nearly constant in time and approx-

imately given by

dB+ .._ 3
dt _ -- 2 f_B, . (12)

The growth of B, in the buildup phase of the weak seed in
the inner disk is illustrated in Figure 2, where the maximum
azimuthal field B; found in the grid is plotted against time,
together with predictions based on equation (12). For a
given time, the predicted value of the azimuthal field is
obtained from the momentary maximum value of the radial

component B," found in the grid and from fl corresponding
to the momentary location of B_. The two sets of data are in
good agreement, demonstrating that the resolution we are
able to achieve within the seed loop is sufficient to properly
describe the linear evolution of the field. For t > I yr, the
effects of motions within the seed and the effects of the

, , , ..... , i , , , , , ,
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Fl(;. 2. Growth of the azimuthal field in the buildup evolutionary
phase of the weak seed in the inner disk. Diamonds: Maximum B+ value
found in the grid at a given time. Curve: B¢ value calculated for that time
from the linear formula leq. [ 12]).

overall expansion of the seed become visible, and the
maximum B_ in the grid falls below the value calculated
from equation (12). At the end of the buildup phase, loss of
field owing to numerical reconnection also becomes notice-
able (see discussion in § 3.4).

Let us note in passing that, according to equation (12),

the sign of B+ is determined by the sign of B,, which means
that the azimuthal field in the upper half of the loop is
directed oppositely to the azimuthal field in the lower part

of the loop. The fact that B+ reverses its polarity inside the
loop motivated us to insert the seed loops away from the
midplane of the disk, so that the oppositely oriented field
patches would form in the grid, and the interaction between
them could be taken into account in our simulations.

As soon as the azim:tthal field appears in the disk, a

magnetic torque, corresponding to the azimuthal com-
ponent of the Lorentz force

! ! _?

L+ ,_ _n Br -r --t_rrB _, , (13)

begins to act on the disk gas. Let us stress again that the last
two equations are approximate and they become invalid

when B= and/or vertical gradients of B_ and _ cannot be
neglected. The Lorentz force L+ is negative at the inner edge
of the loop and positive at the outer edge, where inner and
outer identify the location of the loop's edge with respect to
the disk center. As a result, the torque associated with L,_
causes the angular momentum to drift from the inner into
the outer edge of the loop. In response, the loop stretches
radially (both inward and outward) while essentially main-
taining its vertical extent (Fig. 1). It is worth stressing that
angular momentum redistribution in the loop results in a
net flow of mass toward the center of the disk, associated

with an orbital energy release, and that the orbital energy of
the disk is mainly transformed into the energy of the
azimuthal field. The radial expansion of the loop is a mani-
festation of the magnetorotational instability discussed by
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BGH.However,becauseweusedifferentinitialandbound-
aryconditions,ourresultscannotbedirectlycomparedto
theirs.Theoneexceptionis thecircularpoloidalloop
describedby Hawley& Balbus(1991) in their § 3.5 and
illustrated in their Figure 9. Indeed, in that case the loop
evolves mainly by radial stretching, just as our loops do

throughout the buildup phase.
According to equation (13), the evolution of the disk

should not depend on the orientation of the field in the seed
loop, i.e., two seed loops differing only in the orientation of
the initial field should undergo the same evolutionary
changes. To check the consistency of the MHD code, the
calculation illustrated in Figure 1 was repeated with the
direction of the initial field reversed. No differences were

found.

3.2. Buoyant Phase

Eventually, because of continuous B_ growth, the value
of/3 inside the magnetized region approaches unity, and at
the upper surface of the loop a clear wavy pattern appears.
At this moment the loop enters the buoyant evolutionary
phase, in which plumes of magnetized gas begin to rise
toward the surface of the disk. We tested the credibility of
our simulations in that phase by following the evolution of
a weak seed in the outer disk at resolutions of 6 × 101° and

3 × 101° cm We find that throughout both the buildup
phase and the early stages of the buoyant phase the results
are hardly distinguishable. The high- and standard-
resolution models begin to differ only at more advanced
stages of the buoyant phase (Fig. 3), when the plumes arrive
at the surface of the disk. However, even then the differences

are insignificant as far as the global parameters of the model

(flow pattern, total magnetic energy, and total kinetic
energy of meridional motions) are concerned. The basic
conclusion from this experiment is that our standard grids
are able to resolve the effective radial wavelength 2b of the

buoyant instability.
In Figure 4 different seeds evolving in the inner disk are

compared at the moment when the first buoyant plume
reaches the surface of the disk. Figure 4a shows the
standard strong seed (cf. Fig. 1), originally extending
over Ar = 1.54 × 1012 cm, whose center is located at

z 0 = 2.8 x 10 _x cm above the midplane of the disk and
r o = 5.46 × 1012 cm from the rotational axis. The standard
weak seed with the same original dimensions and location is
shown in Figure 4b. Figure 4c shows a weak seed with
standard z0 and ro but extending over Ar = 2.5 x 1012 cm,
whereas a weak seed with the standard ro and Ar but orig-
inally located at zo = 3.47 x 101 t cm is illustrated in Figure
4d. The simulations demonstrate that 2b is a function of

both the seed strength and the location of the unstable
magnetized area in the disk. It can be seen that at a given ro,
2b grows larger with increasing seed strength B o (compare
Figs. 4a and 4b), increasing distance r from the disk center
(inspect Fig. 4b or 4c) or decreasing distance z from the
midplane of the disk (compare Figs. 4b and 4d). The first
effect is very clear, while the remaining two are only detect-
able after a closer inspection of Figure 4. It may also be
noted that 2b in the outer disk is much longer than any of
the wavelengths excited in the inner disk.

The excitation mechanism of the buoyant instability will
be discussed in ,_ 3.5. Here we would like to point out

another important property of magnetic buoyancy, namely,
that radiative energy transfer has a significant effect on its

b

±

i _. _ ..................

F1G. 3. Weak seed in the outer disk shown at the end of the buoyant

phase It - 4.55 yr). (a_ Standard resolution: Az - Ar - 6 × 10 TM cm. (hi

High resolution: Az - Ar = 3 x 10 TM cm. Contours of constant density in

the (r, z)-plane (almost horizontal, widely spaced lines) are separated by A

log p = 0.25 with log jJ,,,_,, - - 11.25. Contours of constant magnetic pres-
sure (closely spaced and irre_Iular lines) are separated by A log P,, = 0.3

with (log P,.)m,, = 3.9. Arrows: Velocity vectors with V,,_ = 0.5 km s _.
The distance units on the horizontal and vertical axes are 1.84 × 10 _2 and

10 _ 2 cm, respectively.

efficiency. It has been recognized for a long time that the
magnetic buoyancy is aided by radiative heat flow into
the rising elements. To explain this effect let us note that
in the absence of radiative energy transfer the elements
would cool adiabatically, thus weakening the effective
Archimedes force (see Parker 1975; Stella & Rosner 1984).
Here we are able to demonstrate this effect by comparing
two simulations of the strong seed in the inner disk (Fig. 5).
With all initial and boundary conditions identical, one of
the simulations allows for the radiative transfer (Fig. 5a),
while in the other the radiative transfer and the viscous heat

generation are both shut off (Fig. 5b). In the nonradiative
case, the buoyant plumes indeed grow much more slowly
(while the wavelength of the buoyant instability does not
seem to be affected to any significant degree). Unfor-
tunately, because of the limited resolution of our calcu-
lations we are not able to quantify this effect. The
calculations illustrate the important point that magnetic
buoyancy differs fundamentally from thermal convection, in
which the effect of radiation is to cool the rising elements
and reduce the convective flux.

3.3. Saturation Phase

At the end of the buoyant phase the disk undergoes a
rather rapid transition to a state in which the initial,
ordered field structure has evolved into a chaotic ensemble

of patches (Fig. 6). However, while the patches are well
defined and separated by field-free regions in the weak-seed
case, in the strong-seed case they are diffuse, and the gas
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a

I
C

FIG. 4.--Four different seeds in the inner disk are compared at an
advanced stage of the buoyant phase (at the moment when the most
evolved buoyant plume arrives at the surface of the disk). (a) Strong seed.
(b-d) Weak seeds. Contours of constant density in the (r, z)-plane (solid
curves) are shown with A tog o - 0.28 and log p,,,i,, - - 11.0 in all frames.
Contours of constant [/with logarithmic spacing (broken curves) have log

P'm_.= 0.09, 0.45, 0.35, and 0.38 in (a d), respectively, log ,8,_,x= 1.5 in (a),
and log/:/m,, = 1.8 in (h_d). Arrows: Velocity vectors with Vm,x = 1.30, 0.23,
0.18, and 0.23 km s _ in (a-d), respectively. Evolutionary limes: 0.84, 4.15,
4.32, and 2.22 yr in (a d), respectively. The distance unit on the horizontal
and vertical scales is 3.08 x 1011 cm.

between them is weakly magnetized. Further, in the strong-

seed case the average saturation value of/_ is close to unity,

whereas in the weak-seed case it stays greater than five. In

the strong-seed case the total magnetized area is larger, so
that the difference in saturation values of the total field

energy between the two cases approaches an order of mag-

nitude. We conclude that at least up to evolutionary times

indicated in Figure 6 the disk is able to preserve the

memory of initial conditions. The explanation as to why the

final total field energies are different is deferred to the end of

§ 3.5. The disk states shown in Figure 6 are the final ones we

were able to achieve. The simulations had to be stopped
here because of uncontrolled field creation and annihilation

on the grid-spacing scale.

3.4. Energetics

The monitoring of various forms of energy contained in

the disk leads to further clarification of the physical pro-

i
a _J

FJc.. 5. Strong seeds evolving in the inner disk (a) with radiation
transport and (b) adiabatically are compared at t- 0.82 yr. Curves,
arrows, A log p, and log Pm_. are the same as in Fig. 4. (a) and (h) log

[],,,i,_= -0.14 and -0.38, respectively: log//_ - 1.5 in both frames. (al
and (h) [_ - 1.28 and 0.53 km i respectively. Distance unit: 3.08 x 10 _
cm.

cesses responsible for the evolutionary changes described in

,_ 3.1-3.3. As mentioned in § 3.1, in the buildup phase the

azimuthal field grows at the expense of the orbital energy of

the gas, which is driven by magnetic torques toward the

center of the disk. At the same time, the poloidal field slowly

decays as a result of numerical diffusion and/or reconnec-

tion, and its energy E r decreases (Fig. 7). Thus, the total

energy of the field E 1 quickly becomes dominated by the

energy of the azimuthal component, and, in accordance

with equation (12), it grows roughly proportionally to t 2.

The accompanying growth of the kinetic energy K associ-

ated with the motions in the meridional plane results

mainly from the radial expansion of the seed loop.

The total energy of the field keeps growing as _ t 2 until

the numerical loss of B_ becomes significant. In the buildup

phase, the only factor responsible for that loss is the auto-

a _ _x-'__,_ _-__

FIe;. 6.--The final calculated states of la) strong and (b) weak seed
evolving in the inner disk. Evolutionary times: (a) 4.90 yr and (b) 11.90 yr.
Curves, A log p, and log ,o_i,, are the same as in Fig. 4. In frames (a) and (b)
log flmi, = --0.09 and 0.74, log [/m_, -- 1.0 and 2.0, respectively. Distance
unit:3.08 × 10 _ cm.
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FIG. 7.--Total magnetic energy (Etl, total energy of the poloidal field

(Ep), and total kinetic energy of motions in the meridional plane (K) as a

function of time for the strong (subscript s) and weak lsubscript w) seeds

evolving in the inner disk.

matic annihilation (reconnection) of oppositely oriented
fluxes on the grid-spacing scale, which occurs whenever

oppositely oriented patches of B, field are advected into the
same grid cell. In the early buildup phase, the interface
dividing the seed loop into two halves with opposite signs of
B_ stays flat and smooth (Fig. la), there is little motion
across it, and the annihilation rate is a small fraction of the
generation rate. Only in the buoyant phase does the
numerical reconnection become important enough to slow
the growth of E,. The primary cause of the increased
numerical reconnection is vigorous buoyant flow, which
causes the interface between the areas of oppositely oriented

B_ to bend sharply, while the velocities perpendicular to it
grow up to _0.02c_ in the weak seed case (Fig. 4b) and
_0.1c_ in the strong seed case (Fig. 4a). The buoyant, flow
also causes the total area of the deformed loop to increase
rapidly. As a result, the intensity of the azimuthal field
decreases, owing to geometrical dilution of the azimuthal
flux. This effect is probably more important than the
numerical effect until the latest stages of the evolution.

In the strong field case, the numerical loss and the geo-

metrical dilution of Bo acting together cause E, to drop by
half an order of magnitude in less than _0.5 yr between

0.75 and ~ 1.25 yr from the beginning of the simulation.

The same effect is much gentler in the weak seed case, where
E, decreases by a somewhat smaller amount between ,-,3.5
and ~ 5.5 yr from the beginning of simulation (Fig. 7). In

both cases, the poloidal energy Ep reverses its downward
trend and starts to increase during the epoch of declining
E t, whereas the kinetic energy K markedly accelerates its
growth before reaching a maximum value. As we already
stressed in ,_ 2.1 and 2.4, the null divergence of the poloidal
field is always satisfied in our calculations (i.e., the total
poloidal flux stays constant), which means that the
observed increase of the poloidal' field energy does not
violate the axisymmetric antidynamo theorem (see, e.g.,

Parker 1979, § 18). Ep grows simply because the poloidal

field lines are wound more tightly; following the pictur-
esque terminology of Hawley & Balbus (1992), we may say
that the magnetized gas is kneaded by buoyancy-induced
flows, with progressively smaller structures appearing in it

as time goes on. It is worth noticing that both K and E_
increase at the expense of the azimuthal field energy, which
is first transformed into the kinetic energy of buoyant
motions and then into the poloidal field energy as a result of
the kneading phenomenon.

At the moment the first plume arrives at the surface of the
disk another sink of magnetic energy opens, originating
from our condition of constant ambient pressure (§ 2.2).
Any azimuthal field advected into the ambient medium by
the residual mass transfer from the disk into the ambient
medium is assumed to annihilate on the spot, and it is
simply removed from the grid. Any poloidal field is prevent-
ed from extending into the ambient medium through a pro-
cedure in which the electromotive force (hereafter emf) in
the induction equation is gradually reduced from its exact
value just below the surface to zero in the ambient medium
(note that, in the constrained transport method, the modifi-
cations of emf do not violate the poloidal flux conservation
condition). On the average, the surface loss of the azimuthal
field is small (less than 1%) compared to the loss from
numerical reconnection in the disk. Occasionally, however,
it can exceed the latter because of a burstlike escape of B,
into the ambient medium. The influence of emf reduction on

the poloidai field evolution is also small as far as the total
energy of the poloidal field is concerned; we checked that

the Ep curves obtained with and without reduction of the
emf never differ by more than ,-, 10%. However, this pro-
cedure has a significant stabilizing effect on the evolution: if
the emf is not reduced, the vigorous kneading just below the
surface of the disk quickly brings the code to its limits. As
far as the numerical reconnection is concerned, the extent to

which it mimics real physical reconnection is difficult to
estimate, since the true reconnection rate depends on the
detailed geometry of the field, which is not known. This
question is important, and it will be considered in the
future.

The epoch of E t decline comes to an end when a near
equilibrium between field generation and destruction is

reached in the saturation phase. B¢ is now generated from
shearing of a highly nonuniform poloidal field which
spreads over a larger and larger area of the disk. There is no
well-defined interface separating regions with oppositely

oriented B,, the motions are chaotic, and azimuthal field
patches with different signs annihilate "on the spot," at
almost the same rate at which they are created, i.e., on a
timescale of several orbital periods. It may be noted that
this timescale is longer than the shortest possible timescale
for physical reconnection of a field composed of thin
patches, the latter being comparable to the orbital period
(R6_yczka, Turner, & Bodenheimer 1995). As a result, the
average intensity of the azimuthal field remains nearly con-
stant, and the observed slow increase of Ef is almost entirely
caused by the increase of the total magnetized area. With
the characteristic scale of magnetic field structure
approaching the grid resolution, the numerical reconnec-
tion and/or diffusion of the poloidal field also become more
and more effective. As a result, in the saturation phase E o
decreases slowly, with occasional short-term bursts owing
to locally enhanced kneading. The fact that the kinetic
energy of meridional motions also declines in the saturation
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phase is a bit more difficult to explain• In order to elucidate
this issue, let us recall that the increase of K at the end of the

buoyant phase was mainly caused by energy injection on
large scales (comparable to the characteristic size of the first
strong buoyant plumes). Because the magnetic field has
become more homogeneous, that process is much less effec-
tive now (i.e., there is much less buoyant stirring on large
scales), while on small scales K is partly converted into Ep

and partly dissipated by viscosity (see § 2.2) at about the
same rate as before.

3.5. Excitation Mechanism of the Buoyant Instability

The initial conditions for our simulations are too compli-

cated for a detailed linear stability analysis. However, even

an approximate analysis based on a "submerged sharp
boundary" case discussed by Parker (1979, p. 316) may be
useful. To apply it, we will have to adopt two simplifying
assumptions. First, we follow Parker by adopting the
Boussinesq approximation, in which the effect of compress-
ibility is neglected for the perturbed quantities. Second, we
assume that the upper boundary of the magnetized region is

originally entirely flat and infinite in extent (i.e., that the
curvature of the initial poloidal field lines is unimportant),
and that the generated azimuthal component is equivalent
to a uniform field with straight lines perpendicular to the
initial poloidal field lines. We shall also assume that the
gravitational acceleration and total (gas plus magnetic)
pressure are uniform in the vicinity of the upper boundary
of the magnetized region. The stable lower boundary of the
magnetized region will be entirely excluded from our con-
siderations.

To facilitate referencing to Parker's work, let us adopt the
same Cartesian coordinate system (x, y, z), and let us use the

same symbols. Let the ),-axis point in our azimuthal direc-
tion, while x- and z-axes will point in our radial and vertical

directions, respectively. Further, let the gravitational accel-
eration g be oriented toward the midplane of the disk (i.e., in
the negative z-direction). For the present analysis, we locate
the interface between magnetized and field-free regions at
z = 0. The magnetic field is perpendicular to g and confined
to the half space z < 0, hereafter referred to as domain 1 (the
field-free region is referred to as domain 2). Although the
total pressure is continuous across the interface, the density
in domain 2 is larger than that in domain I by an amount
Ap because of the drop in magnetic pressure. Neglecting
changes in the sound speed c_, the total pressure

p, = pc. 2 + (B 2 + B2)/8n (14)

maintains a balance with that in domain 2in domain 1
when

2 2Ap = (n_ + n,)/8nc_ , (15)

where B x (our B,) is approximately constant in time and B r

(our B,) grows in time according to equation (12).
Our first assumption results in

V • v = 0, (16)

where v is the perturbed velocity. The rotational part of v
only contributes to oscillatory Alfv6n waves and therefore is
irrelevant here. In domain l, the irrotational part of v may

be expressed in terms of a potential function

v = -Vq', (17)
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with

ud = C(t) exp (ixkx + iykr + zx//_ + k_) , (18)

where C(t) is a function of t, k x, ky, and k. are components of
the wavevector k, and i is the imaginary unit. From the

induction equation (4) we find the perturbed field com-

ponents

bx = (B,, k xky + B x k2)_'W ,

br = (Brk _ + Bxkxkr)C(¢ud , (19)

• 2 2 k2)_'q ' , (20)bz =(-,B,,k,x//-_ + ky - iB_kxw/_ +

where c£ = S_ C(t')dt'. For domain 2, the potential function
for the perturbed velocity is

• = S(t) exp (ixk_ + iyk r - zx/_'2_ + k_). (21)

The sign for the z dependence of the potential functions is
chosen such that qJ and • vanish as z approaches -,_, and

+ _, respectively. The location of the perturbed interface is
given by a Lagrangian variable ((x, y, t)= _v.dt. The
requirement for v. to be continuous across the interface
implies that

C(t) + S(t) = 0 (22)

at z = _. Remembering that in domains 1 and 2 the pressure
at the perturbed interface is lower than that at z = 0 by gp_
and g(P + Ap)_, respectively, we can obtain from equation
(3) the following condition for pressure balance at the inter-
face (see also Parker 1979, p. 318):

Bx
(_iP2)o -= (bpi)o + _ (b,,)o + (bx)0 + g Ape + AQ::

4n _

(23)

where 6p is the pressure perturbation, subscripts 1 and 2
refer to perturbations in magnetized and nonmagnetized
domains, respectively, and subscript 0 denotes a value cal-
culated at z = 0. The last term in equation (23) accounts for

the nonvanishing difference in the zz component of the
viscous stress tensor across the interface :

: - (. +A. VtSzL
= (2p + Ap)v(k_ + k2)V, (24)

where v = q/p and r/is given by equation (5). After appro-
priate substitutions, equation (23) yields the amplitude

equation

V 7(2p + Ap) _ + v(k 2 + k2)V

[ ;o-- gApx/_ +k2- (Bykx+ Bxk')2] Vdt'=O.
4n d

(25)

Since our numerical models are axisymmetric, in the follow-

ing, let us focus on modes with ky = 0 which do not bend
the lines of By (i.e., our azimuthal field). We shall refer to
them simply as interchange modes, keeping in mind,
however, that only the azimuthal field lines are subject
to pure interchange modes, while poloidal field lines may
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still undulate.Underthe substitutionsr = fit, k = Hkx,
y = E22H, and cs = ?sf]H (where H is the disk half-thickness

and f_H is the midplane value of the sound speed as given
by the standard theory of thin accretion disks), equation
(25) reduces to

dC(r) 2?_2_k2C(r) [2k 2 - k(l + 9r2/4)1 f_
a3 + 3 +L TBo+ Z9T J3o

(26)

where flo is the initial value of ft.
The linear integrodifferential equation (26) for the ampli-

tude C was solved numerically as an initial value problem
with the help of a fourth-order Runge-Kutta method. To
account for the displacement of the interface (i.e., the upper

-2
surface of the loop) from the midplane of the disk cs was set
equal to 0.5. The results of integrations for _ = 0.05 and

= 0.01 are plotted in Figure 8 as a function of k and 3,
with C normalized to unity at 3 = 0 for all k. In each panel
the curves are separated by equal intervals of time (At = 3
and 10 for strong and weak seed models, respectively). The
highlighted curves in the _ = 0.05 panels correspond to the
beginning of the buoyant phase as determined from our
simulations (epoch r = 15 for the strong seed and r = 80 for
the weak seed). Note that, at these epochs, maximum C is
attained for k _ 5-6, which agrees reasonably well with the
wavelengths actually excited (Figs. 3 and 4).
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Figure 8 also indicates that short-wavelength modes
grow at a significantly lower rate than the most unstable
mode. This finding runs contrary to the original results of
Parker, according to which, in the submerged sharp bound-
ary case, shorter wavelengths have consistently higher
growth rates. This difference is a result of the presence of
both the poloidal field and the viscosity (factors which were
absent from Parker's analysis). In equation (26), the viscous
(i.e., the second) term clearly damps the growth of perturbed
quantities. The effectiveness of the viscous damping may be
estimated with the help of the dimensionless damping time-
scale

3

ra -- 2_2_k2 . (27)

In our numerical simulations, 3a approaches unity (i.e., the
dynamical timescale) for wavelengths comparable to H,
while perturbations with 2 < H are damped on timescales
shorter than the dynamical timescale. A similar stabilizing
role is played by the tension of the Bx (our B,) lines. In order
to elucidate this effect, let us set v = 0 and define a charac-

teristic timescale of the amplitude growth

C

rq = de�dr " 128)

Despite the fact that r o decreases with r initially and
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FIG. 8.--Results from linear stability analysis. The amplitude of the perturbation is plotted as a function of wavenumber k = 2nil�2 at several evolution-

ary times, where H is the half-thickness of the disk. Each frame is labeled with the assumed initial ratio till of gas pressure to magnetic pressure and with the

viscosity parameter (_)- The times for the cases fl = 3 x 102 start at _t - 3 (lowest curves) and increase upward in increments of _t = 3. The times for the

cases fl = 3 × 104 start at fit = 10 (lowest curves) and increase upward in increments of [2t - 10. Heavy lines: time of onset of instability in the numerical
simulations.
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approaches a constant for large z, let us approximate

"rg,_ _T) CIr')dz' . (29)

Based on this approximation, equation (26) reduces to

1 2k 2 - k(1 + 9rZ/4)
-- + = 0 (30)
r 0 2//o + 1 + 9r2/4,. z° '

yielding the following stability condition in the absence of
viscosity :

,( 9) 2k>_ 1 +_.r 2 -_ . (31)

A comparison of the corresponding left and right panels in
Figure 8 shows that for the parameters considered here, the
viscous effects on the stability of the buoyant modes may
dominate those resulting from the tension of B r lines. This
result, however, is not absolutely certain. Also, the depen-
dence of the most unstable wavelength on the initial seed
strength, clearly visible in the simulations, is detected only
marginally by the linear stability analysis (compare the two
left panels with 7 = 0.05 in Fig. 8). These two facts indicate
that additional calculations and a more detailed analysis
would be necessary to clearly assess the role of both factors.
However, such an analysis is unlikely to change the main
conclusion of the present section: the plumes observed in
our simulations originate from interchange modes acting
predominantly on the azimuthal field, and mediated by the
presence of the poloidal field and nonnegligible viscosity.
Moreover, in accordance with the simulations, the present
analysis predicts that the most unstable wavelength should
scale with the half-thickness of the disk. Based on this

analysis, we can also provide an explanation for the differ-
ence in the final total field energies mentioned in § 3.3. Mea-
suring the logarithmic derivative of the perturbdtion
amplitude d In C/dr, we find that it first approaches unity at
the peak of the highlighted curves in the left panels of
Figure 8. The corresponding timescale for amplitude

growth r 0 also approaches unity, which means that the per-
turbations begin to grow on a dynamical timescale, and a
transition from the buildup to the buoyant phase is initial-
ized. At the moment when r 0 drops to unity, [:_predicted by
the linear analysis approaches _0.6 and 42.1 for the
strong and weak seed, respectively. Shortly afterward,
strong buoyant motions begin to stir the disk, and the

reconnection rate goes up, preventing further growth of B e.
Thus, the field saturates at a strength not much different

from the one it had when r 0 approached unity for the fastest
growing mode.

4. SUMMARY AND DISCUSSION

The simulations reported in the preceding sections fol-
lowed the evolution of a seed poloidal field in an axisym-
metric accretion disk. We found that the azimuthal

component of the field B, grows as a result of shear until the
thermal equipartition value of [/= 1 is approached. At the
same time, the seed spreads radially (toward both the center
of the disk and its outer edge) as a result of the magneto-
rotational instability (hereafter MRI). Within the seed, the
angular momentum of the disk gas is removed by magnetic
torques from mass elements at smaller orbital radii, and it is
added to mass elements at larger orbital radii. The growth

of B, is stopped by vigorous buoyant motions leading even-

tually to partial ejection of the field from the disk, fragmen-
tation of the seed, and the establishment of a turbulent

velocity field. The linear stability analysis indicates that the
buoyancy effects are a result of interchange modes of the

Parker instability (Parker 1979, § 13) acting on the azi-
muthal component of the field, with the effectively excited
wavelength depending on the poloidal seed strength and the
effective viscosity assumed for the disk gas. At later evolu-
tionary times, a quasi-stationary state is reached, in which
the total magnetic energy of the disk slowly grows because
of radial expansion of the magnetized region, while the
average values of field components either remain roughly
constant or decrease slowly owing to numerical reconnec-
tion. In that state, the poloidal field assumes a patchy struc-
ture, with the medium between patches being either
field-free or more weakly magnetized than the patches
themselves. (Let us note that a patch of the poloidal field,
for example, one of those plotted in Fig. 6h, is also a merid-
ional cross section of a bundle of toroidal field lines).

In our models, both the field intensity at which buoyancy
begins to effectively operate and the saturation intensity
decrease with decreasing initial seed field strength. The
dependence, however, is rather weak (see § 3.3). One may

safely assume that in the presence of B,_ _ Br feedback the
seed fields would be amplified, and it is likely that a satura-
tion intensity independent of the initial seed strength (i.e.,
defined solely by the disk's microphysics) would be
achieved. Unless the three-dimensional effects or physical
dissipation of magnetic fields prove to be very important,
on the basis of our simulations, it is rather difficult to

imagine that the field would saturate at ,8 >> 1. Thus, at least
in the realm of ideal MHD, we expect the buoyant dynamo
to generate rather strong fields. On the other hand, our
calculations indicate that/3 = 1 is an absolute limit to field
amplification, since already at /3 _ 1 buoyant motions are
so vigorous that the field begins to escape from the disk.
The same limiting field strength was obtained by Galeyev et
al. (1979), who discussed a classical turbulent disk dynamo.
Let us note that at [/_ I the Alfven velocity, which may be
regarded as a reasonable approximation to the buoyancy-
generated velocities (Meyer & Meyer-Hofmeister 1983;
Tout & Pringle 1995), is comparable to the velocity of
sound % The characteristic timescale for the field escape is
then only H/c, _ 1/_.

From our numerical results we can now estimate the

effective viscosity parameter _ introduced by Shakura &
Sunyaev (1973). For simplicity, we shall assume that in the
saturation state the field is indeed collected in rather well-

defined patches (see Fig. 6h), and that each patch evolves in
the same way as the initial seed loop, experiencing its own
buildup phase (however, with a value of B r which does not
necessarily have to be the same as that of the initial seed).
We further assume that the buildup phase always ends at
fl = I, neglecting the weak dependence of saturation inten-
sity on Br. In other words, we assume that the field saturates
when the magnetic pressure generated by the azimuthal
component of the field becomes equal to the thermal pres-
sure. If the initial/_ of a typical patch is significantly smaller
than unity, and if Br stays roughly constant throughout the
buildup phase, then it follows from equation (12) that the
time tb needed to make the azimuthal field effectively
buoyant, i.e., to achieve the saturation value of

B, = c,w/87t p , (32)
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isgivenby

2 c_
tb -- 3 f_B, 8x/_ " (33)

During that time the accumulated magnetic torque per unit
mass results in a specific angular momentum change of

4 c_
AJ - (34)

3_)'

resulting in an average magnetic torque

J. - AJ _ 2c_ , (35)

where

8npc_
fl,-- B 2,

Comparing J,. with the viscous "s-torque,"

we get

(36)

3 _c_ , (37)

4 1
- (38)

3 /-_, "

Setting fl, = flo in order to apply this general formula to our
original strong and weak seed fields, we obtain an effective ot
of 0.06 and 0.006, respectively. We see that in the strong
field case a (coincidental) agreement is found between the
assumed and the effectively generated value of :t. In two-
dimensional calculations, the same s-values are applicable
during the saturation stage, because B, approximately pre-
serves its initial value. However, in three-dimensional calcu-
lations B, would be expected to increase, resulting in an
increase in the effective value of :t during the evolution.

The enforced axial symmetry of our simulations prevents

the transformation of B, into the poloidal components B_
and B,. However, in three dimensions such a transform-
ation is unavoidable, since the Coriolis force acting on
buoyant elements results in helical twisting of the azimuthal
field lines. The feedback between B e and B, is a necessary
requirement for the dynamo operation. Given the robust-
ness of the buoyant motions illustrated by our simulations,
it seems that such a dynamo, powered solely by shear and
hydromagnetic instabilities, should be a vital component of
the physical processes governing the structure and evolu-
tion of accretion disks. Moreover, its operational range
would extend into convectively stable regions of the disks,
where field generation mechanisms that rely on an under-
lying turbulence cannot be applied. In a convectively stable
region, the amplification of the seed field would not be ham-
pered by the nonlinear effects discussed by Kulsrud &
Anderson (1992) and Vainshtein & Cattaneo (1992), since
the turbulence would appear only after a strong azimuthal
field has been generated.

In an idealized scenario, the dynamo would be activated
whenever a radial seed field appeared in the disk. The

primary energy (the orbital energy of the disk gas) would be
transformed into the azimuthal field energy, making the

seed increasingly buoyant. The buoyancy effect in turn
would transform the azimuthal field energy into kinetic

energy of radial and vertical motions of the disk gas. These
motions alone, without the help of the Coriolis effect, would
be able to turn their own energy partly into the energy of
the poloidal field through the kneading phenomenon dis-
cussed in § 3.4. At the same time, the vertical motions com-
bined with the Coriolis effect would regenerate and/or

amplify the initial seed. Dissipation of kinetic and magnetic
energies within the disk would generate heat, resulting in an
enhancement of buoyant motions by radiative energy
inflow into the rising elements (see § 3.2 and Stella &
Rosner 1984). Because of the MRI, the whole dynamo
process would be necessarily accompanied by angular
momentum transfer from lower to higher orbits and by an
accretion flow. Thus, the expansion of an initially localized
dynamo process would ensue, which could only be stopped
in the regions where coupling between the field and the disk
gas is inefficient owing to a very low degree of ionization.

However, many questior]s have to be answered before the
above-outlined scenario could be adopted. Probably the
most important one among them concerns the long-term
evolution of the buoyant dynamo over periods comparable
to, or longer than, the accretion timescale. One may suspect
that the same buoyancy that is responsible for magne-
tization of the disk will slowly remove the field from the
vicinity of the equatorial plane and drive the magnetized
area toward the surface, eventually leading to complete
demagnetization of the disk gas. A counterargument is that
buoyancy does not operate at z = 0, and thus the removal
of the magnetic field from the equatorial plane would not
occur. Extensive numerical research is required to deter-
mine whether a strong equilibrium field can be maintained
in the long term. Further, three-dimensional effects may not
only support the dynamo action but also counteract it. For
example, BGH find that weak azimuthal fields are also
prone to the MRI. Thus, a suspicion arises that the buildup
phase could be substantially shortened, saturating the
dynamo at a much lower field intensity than suggested
above. On the other hand, BGH point out that as time
advances the wavelength of the dominant azimuthal mode
of the MRI becomes longer. This would mean that the field
is able to organize itself into more coherent structures
which may eventually evolve into nearly axisymmetric
patches. Another three-dimensional effect whose influence
on the efficiency of the buoyant dynamo remains unclear is
the undulating mode of the Parker instability, as a result of
which the azimuthal field lines bend vertically. Again, exten-
sive numerical research is needed to elucidate these issues.

Finally, one may ask how the buoyant dynamo would
operate in the presence of a turbulent velocity field not
related to magnetic buoyancy (e.g., excited by thermal
convection), and how it would react to an externally con-

nected field threading the disk. While the answer to the
latter qestion may be connected to the BGH results that
indicate enhanced magnetoturbulence caused by the MRI,
the interaction between convective flows and magnetic
buoyancy effects seems to be too difficult a problem to be
tackled at the present state of research.
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